数学联邦政治世界观
超小超大

广义G模型的可构造性宇宙L: 终极骗局 (10-8)

因为每个可数的完全超滤子都是主的。

  

定理(哥德堡)

  

假设V = HOD并且存在

  

十. ≺σ2五世

  

使得MX = ZFC,其中MX是x的传递折叠

  

假设弱比较成立。

  

我认为超能力公理成立。

  

如果X不存在,那么弱比较成立。

  

我如果有一个超级紧凑的红衣主教,甚至只是一个强大的

  

红衣主教,那么X一定存在。

  

强紧基数

  

定义

  

假设κ是不可数的正则基数。那么κ是α

  

强紧基数如果对于每个λ > κ存在一个

  

在Pκ(λ)上超滤U,使得:

  

1.u是κ-完全超滤子,

  

2.u是一种优良的超滤器。

  

每个超紧基数都是强紧基数。

  

一个自然的问题马上出现了:

问题

  

假设κ是强紧基数。必须是一个

  

超级紧凑红衣主教?

  

梅纳斯定理

  

定理(Menas)

  

假设κ是可测基数,κ是强基数的极限

  

紧凑型红雀。

  

那么κ是一个强紧基数。

  

引理

  

假设κ是一个超紧基数,设S是

  

γ < κ,使得γ是可测基数。

  

那么S是κ的平稳子集。

  

推论(中东北非)

  

假设κ是最小可测基数,它是

  

超级紧凑的红衣主教。

  

如果κ是强紧基数,而κ不是

超级紧凑红衣主教。

  

超幂公理和强紧基数

  

一、马吉德的身份危机定理:

  

定理(马吉德)

 

假设κ是一个超级紧基数。然后是一个(类)

  

V的一般扩展,其中:

  

I κ是一个强紧基数。

  

我κ是唯一可测量的基数。

定理(哥德堡)

  

假设超幂公理,对于某些κ:

  

I κ是一个强紧基数。

  

我不是超级红衣主教。

  

那么κ是超紧基数的一个极限。

I . ultra power公理解决了“身份危机”。

  

根据Menas定理,这是最有可能的。

  

超能力公理和GCH

  

定理(哥德堡)

  

假设超幂公理和κ是一个超紧

  

红衣主教。

  

我接着2

  

λ = λ+对于所有λ ≥ κ。

  

I超幂公理在V和V[G]之间是绝对的

  

所有相关布尔代数为的泛扩张

  

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

无法触碰的恋 连载中
无法触碰的恋
食言的笨蛋
0.6万字8个月前
玥夜笙歌 连载中
玥夜笙歌
微星痕
以荒诞的理由拟订的婚书让她难以相信自己只是棋子,便逃离下界,可另一人寻疯了
0.9万字8个月前
11号公寓:真相(修文中……) 连载中
11号公寓:真相(修文中……)
卡布叻_晚念
俩个版本的续写(故事续写/杀手团)故事续写:11号公寓:真相【已完结】杀手故事:11号杀手团【已完结】————————————————11号......
7.0万字8个月前
凹凸观影(原神) 连载中
凹凸观影(原神)
冰晶莲花
就是凹凸世界观影原神。
0.4万字8个月前
浅情人不知迷途归思云 连载中
浅情人不知迷途归思云
逗逗飞了
“阿浅,我肮脏恶劣,你是我的黎明曙光。”——边伯贤“纵使我把心掰碎了给你,你可曾心疼过我”——边伯贤“我想去带你看繁华盛景,许你一个永恒。”......
0.0万字8个月前
遥远,触不可及的你啊 连载中
遥远,触不可及的你啊
不是不归人
未来的某一天,即使人们还不能穿越时空,但是当某种超能源开放后,人们却可以任意出入自己朝思暮想之人的梦境之中,并且在那人梦醒时分依旧能清晰的记......
6.2万字8个月前