数学联邦政治世界观
超小超大

直觉主义完全性(逻辑论文) (11-4)

D ₁ 的结论为ψ ₂,前提比 D 的前提多了一个

ψ ₁ 。此时归纳假设为Φ∪{ψ ₁}╟ψ ₂ 。我们要证:对𝕶中任意状态 i,只要 𝕶(i,Φ)=T,就有𝕶(i,ψ ₁ →ψ ₂)=T。

设𝕶(i,Φ)=T。根据单调性引理 (8.2.3),对j∈l,i≤j,我们有𝕶(j,Φ)=T。如果𝕶(j,ψ ₁)=T,则𝕶 (j,Φ∪{ψ ₁} )=T。根据归纳假设,此时有𝕶 (j,ψ ₂) =T。由定义8.2.2-5,𝕶(i, ψ ₁ → ψ ₂)=T。

(∨E) [ψ ₁] [ψ ₁]

D₁ D₂ D₃

ψ₁∨ψ₂ φ φ

─────────

φ

设D ₁、D ₂、D ₃ 的前提集分别

为Φ ₁、Φ ₂、Φ ₃,则Φ=Φ ₁,∪

{Φ ₂ — {ψ ₁} ) ∪ (Φ ₃ — {ψ ₂} )。针对

D ₁、D ₂、D ₃ 的归纳假设分别为:

(*)Φ ₁ ╟ψ ₁ ∨ψ ₂;

(*) Φ ₂ ╟φ;

(***)Φ ₃ ╟φ。

对𝕶中任意状态 i,设𝕶(i,Φ)=T,我们要证𝕶 (i,φ)=T。

由于Φ ₁,⊆Φ,所以𝕶(i,Φ ₁)=T。根据(*),𝕶(i,ψ ₁ ∨ ψ ₂)=T。由定义 8.2.2-4,

𝕶(i,ψ ₁)=T或𝕶(i,ψ ₂)=T.

如果𝕶(i,ψ ₁)=T,那么根据𝕶(i,Φ)=T,有𝕶 (i,Φ ₂)=T。再由(**)𝕶(i,φ)=T。

如果𝕶(i,ψ ₂)=T,那么根据(***)同理可证,𝕶(i,φ)=T。

总之,𝕶(i,φ)=T。

3) D 的最后一步应用量词规则。由于我们只考虑语句组成的推演,所以 (∀l) 和 (∃E) 需要稍作改动,用个体常项代替其中的关键自由变项。但这些常项为了能够保持「任意性」,也必须满足原先对于变项的那些限制条件,具体见以下的叙述:

(∀l) D₁

ψ (a/x)

───

∀xψ

条件是:常项 a 不在前提集Φ中出现。因此,D ₁,实际上是一个推演模式,其前提未规定a有任何特殊性质,换言之,在a的位置上可以代以任何项t而仍然能够从原前提依据D ₁,推

出 ψ (t / x)。因而,我们可以有全称的结论。

此时的归纳假设为:Φ ╟ψ (a /x)。由a的「任意性丨,这意味着,对𝕶中任意状态i,如果𝕶 (i,Φ)=T,则对任何t∈D (i),都有𝕶 (i,ψ(t / x) )=T。

现在假定 𝕶(i,Φ)=T,我们要证𝕶 (i,∀xψ)=T。根据单调性引理,对j∈l,i≤j,我们有𝕶 (j,Φ)=T。由归纳假设,对任何t∈D (j),𝕶(j,ψ (t / x) )=T。因此,据定义

8.2.2-6,𝕶(i,∀xψ)=T。

再考虑D的最后一步应用 (∃E) 的情形。

(∃E) [ ψ(a / x) ]

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

夜乡织梦 连载中
夜乡织梦
云落卡卡
夜乡,总和世界。总和的记忆,总和的梦。
2.8万字8个月前
伊美娜的良人 连载中
伊美娜的良人
仁默认墨
无秩序的慵懒,无规则的混乱
0.9万字8个月前
惊悚副本求生攻略 连载中
惊悚副本求生攻略
木烬乐
简介看第1章
0.2万字8个月前
明月黑我心 连载中
明月黑我心
沐兮缺德
女主原本只想在宗门里当个废物,可天不遂人愿。女主无奈,只能奋力修行,最后成为修真界第一大佬。
0.1万字8个月前
雅家:孟小姐,她非常反骨 连载中
雅家:孟小姐,她非常反骨
夏芝月
自己看吧!我不喜欢剧透
0.7万字8个月前
孟婆:千娇百媚 连载中
孟婆:千娇百媚
时光不老岁月静好
传播正能量,爱与正义:男儿百炼刚,坚不可摧。女儿绕指柔,千娇百媚。以柔克刚,他强悍心似铁,遇心爱的她。孟婆在人间从青楼当花魁,助难民,阻止魔......
5.4万字8个月前