数学联邦政治世界观
超小超大

数学论文(关于集泛多重宇宙) (12-8)

f(t)

is one of the deduction rules. 

  

我们必须在这里强调,在(3.5)中,我们不假设函数f是一对一的,否则我们必须为中的每个公式选择一个证明在(R1)和(R2)的前提中的集合。因此,例如,我们可以推断T⊢在S中的∧∧Φ来自T⊢ξ,对于所有的Γ∈Φ而不吸引AC。

现在,以下内容的证明是一个简单的练习:

3.1号提案 .(1) 对于任何B⊆µ,T \8838 L∞(µ)和ξ∈L∞并且B|=T,那么我们有B|=ξ。

(2) 对于ZF的传递模型M、N使得M是N的内部模型,如果M|=“hT,fi是在L∞(µ)中的一个证明”,则N|=“hT,fi是在L∞(µ)中的一个证明”。

证据(1) :通过对固定证明h T,fi的共尾子树的归纳。(2):明确定义。

(3.1号提案)

通过演绎系统进行论证的另一种设置是在引理的证明中利用M|=“Γ2.4:

M|=“Γ⊢ξ”当对于某个集合中的任意B⊆µ强制扩展M[G]M、 对于所有ψ∈Γ,M[G]|=B|=ψ总是意味着M[G]|=B|=Γ。

注意,这在M中是可定义的,使用在M上可定义的强迫关系。

这一概念是否具有所期望的绝对程度还有待验证。

实际上,我们可以很容易地证明完全绝对性,也就是说,如果N是可传递的包含M的模型,其序数与M的序数相同,则对于Γ,Γ∈M。当M|=Γ⊆L∞(µ)和M|=ξ∈L∞在N中。

首先假设B⊆µ是集合泛型扩展N[G]中的一组序数使得B见证了Γ⊢Γ在N中的失败。设x是实数足够大的Γ到ω的L´evy坍缩的一般性在N上使得Γ和µ在一般扩展N[x]中成为可数的。那么x也是L´evy泛型并且M[x]是N[x]的子模型。根据L´evy绝对性,它遵循M[x]中存在B′⊆µ,这也见证了Γ。

相反,假设Γ⊢ξ在N中成立,并设B⊆µ是一组序数在M的一个集合泛型扩展M[G]中,使得B见证Γ在M中,那么B也属于M的一个推广,它对L´evy是通用的足够大的Γ到ω的坍缩;在这个强制中选择一个条件p强制这样一个B的存在。现在如果x是N上的L´evy泛型,并且包含在条件p中,我们看到在N中存在Γ

在N[x]中,与我们的假设相反。

通过对⊢的两种解释,我们可以检查中的论点第2节通过。

4 . 集合一般多元宇宙的公理化框架

在这一节中,我们考虑集合泛型的一些可能的公理化处理多元宇宙。这种公理化处理也在例如[9]、[19]、[22]中进行了讨论。

我们引入了ZFC的一个保守扩展MZFC,其中我们可以处理集合的多元宇宙ZFC模型的一般扩展作为的集合可数传递模型。该系统或其进一步扩展(也可能处理温和的阶级强迫)可以用作直接的基础关于多元宇宙的表述。

公理系统MZFC的语言LMZF由ǫ-关系组成符号‘∈’,和一个常数符号‘v’,它应该表示可数可传递的“地面模型”。

公理系统MZFC包括

(4.1)ZFC的所有公理;

(4.2)“v是一个可数传递集”;

(4.3)对于ZFC的所有公理的“v|=ξ”;

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

二潇的撞鬼日常 连载中
二潇的撞鬼日常
猫宁2
只听说打怪能升级,就没听说过捉鬼也能升级的,而且偶尔还会掉点装备顾萧潇也是醉了,她虽然从小就喜欢听灵异故事,但也是一位好龙的叶公而已。看着房......
40.4万字11个月前
杀生丸之九月如风 连载中
杀生丸之九月如风
希九儿
继爱上杀生丸的女子
3.5万字11个月前
青关纪 连载中
青关纪
南施姑娘
2.3万字11个月前
半妖与阎罗王 连载中
半妖与阎罗王
侏罗纪丹青
半妖星瞳从小在阎罗王的看护下长大,她成年后决议嫁给阎罗王,但天尊与冥王的阻拦,人世间的牵绊……让星瞳历经磨难最终,为了阎罗王,她放弃了属于她......
21.6万字11个月前
拯救万人迷仙尊我我义不容辞 连载中
拯救万人迷仙尊我我义不容辞
小黄瓜培养液
【原创作品:美人师兄&戏精师弟】一朝穿越,他成了绝美仙尊的‘疯子’师弟,他忍不住欢喜,想要改变美人师兄在原著中的结局。为了保护美人师兄还有整......
2.6万字11个月前
汪汪队之阿奇,天天恋爱 连载中
汪汪队之阿奇,天天恋爱
忠诚小六
主要写天天和阿奇的爱情!写的不好,勿喷!
0.4万字11个月前