数学联邦政治世界观
超小超大

Ultimate-L,终极-L (9-1)

定义

  

假设λ是不可数基数。

  

如果存在余尾集X ⊂ λ,则I λ是奇异基数

  

使得X < λ。 

  

如果不存在共尾集,则I λ是正则基数

  

X ⊂ λ使得X < λ。 

  

引理(选择公理)

  

每个(无限)继任基数都是正规基数。

  

定义

  

假设λ是不可数基数。

  

那么cof(λ)就是

  

最小可能x,其中X ⊂ λ在λ中是共尾的。

  

I cof(λ)总是正则基数。

  

如果λ是正则的,那么cof(λ) = λ。

  

如果λ是单数,那么cof(λ) < λ。

詹森二分法定理

  

定理(詹森)

  

恰好下列之一成立。

  

(1)对于所有的奇异基数γ,γ是L和中的奇异基数

  

γ+ = (γ+)L.

  

I L接近v。

  

(2)l中的每个不可数基数都是正则极限基数。

  

I L远离v。

  

斯科特定理的强有力版本:

  

定理(银)

  

假设有一个可测基数。

  

那么L远离v。

  

塔尔斯基定理和哥德尔响应

  

定理(塔尔斯基)

  

假设M = ZF,设X是所有α ∈ M的集合,使得α是

  

可在M中定义,不带参数。

  

如果没有参数,X在M中是不可定义的。

  

塔尔斯基定理和哥德尔响应

  

定理(塔尔斯基)

  

假设M = ZF,设X是所有α ∈ M的集合,使得α是

  

可在M中定义,不带参数。

  

如果没有参数,X在M中是不可定义的。

  

定理(模型)

  

假设M = ZF,X是所有α ∈ M集合,使得

  

对于M的某个序数b,α在M中可由b定义。

  

I那么X在M中是σ2-可定义的,没有参数。

  

G odel的传递类HOD

  

我记得集合M是传递的,如果M的每个元素都是α

  

m的子集。

  

定义

 

HOD是所有集合X的类,使得存在α ∈Ord和

  

⊂先生Vα这样

  

1.X ∈ M,M是传递的。

  

2.M的每个元素在Vα中从序数可定义参数。

  

我(ZF)选择的公理在霍德那里成立。

  

我是⊆·霍德。

  

I HOD是所有传递集M的并集,使得每个

  

M的元素在V中可由序参数定义。

  

我被G odel的回答打动了。

  

固定集合

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

生存游戏——回归 连载中
生存游戏——回归
猫猫卷饼
0.3万字10个月前
开局古人围观我玩纸嫁衣 连载中
开局古人围观我玩纸嫁衣
腿毛长长君
(已签约+无CP+后期快穿前期观影+无脑爽)胡乱点击游戏界面时,宴希没注意点到确认一个广告,她怎么也没想到自己的手机居然连接了万界!!无聊透......
6.0万字10个月前
三生三世之情深缘浅(续) 连载中
三生三世之情深缘浅(续)
佛铃花语
此书为之前三生三世之情深缘浅的续写。
20.6万字10个月前
宸汐缘之后续 连载中
宸汐缘之后续
苏艺谨
总感觉宸汐缘不应该就这样结束了,出了一个后续,希望大家喜欢。〈已签约〉禁转载般运
4.0万字10个月前
猫妖大人在我家 连载中
猫妖大人在我家
花子49
“轰隆隆……”潇涵望向窗外,稍微皱了一下眉头潇涵耀耀,一会儿早回家,别去打工了,这天好像要下雨苏耀耀听到声音,把头从手机屏幕上移开,望了望窗......
5.0万字10个月前
快穿我是反派的白月光 连载中
快穿我是反派的白月光
人间散落日光
(双洁,男主有时强有时弱但一定惨,女主前期弱后期会慢慢强)秦楒是九天上的神女也是战神,却因能力太强被众神推下诛神台沈蚀是魔界的魔尊,心悦秦楒......
6.0万字10个月前