数学联邦政治世界观
超小超大

Ultimate-L,终极-L (9-1)

定义

  

假设λ是不可数基数。

  

如果存在余尾集X ⊂ λ,则I λ是奇异基数

  

使得X < λ。 

  

如果不存在共尾集,则I λ是正则基数

  

X ⊂ λ使得X < λ。 

  

引理(选择公理)

  

每个(无限)继任基数都是正规基数。

  

定义

  

假设λ是不可数基数。

  

那么cof(λ)就是

  

最小可能x,其中X ⊂ λ在λ中是共尾的。

  

I cof(λ)总是正则基数。

  

如果λ是正则的,那么cof(λ) = λ。

  

如果λ是单数,那么cof(λ) < λ。

詹森二分法定理

  

定理(詹森)

  

恰好下列之一成立。

  

(1)对于所有的奇异基数γ,γ是L和中的奇异基数

  

γ+ = (γ+)L.

  

I L接近v。

  

(2)l中的每个不可数基数都是正则极限基数。

  

I L远离v。

  

斯科特定理的强有力版本:

  

定理(银)

  

假设有一个可测基数。

  

那么L远离v。

  

塔尔斯基定理和哥德尔响应

  

定理(塔尔斯基)

  

假设M = ZF,设X是所有α ∈ M的集合,使得α是

  

可在M中定义,不带参数。

  

如果没有参数,X在M中是不可定义的。

  

塔尔斯基定理和哥德尔响应

  

定理(塔尔斯基)

  

假设M = ZF,设X是所有α ∈ M的集合,使得α是

  

可在M中定义,不带参数。

  

如果没有参数,X在M中是不可定义的。

  

定理(模型)

  

假设M = ZF,X是所有α ∈ M集合,使得

  

对于M的某个序数b,α在M中可由b定义。

  

I那么X在M中是σ2-可定义的,没有参数。

  

G odel的传递类HOD

  

我记得集合M是传递的,如果M的每个元素都是α

  

m的子集。

  

定义

 

HOD是所有集合X的类,使得存在α ∈Ord和

  

⊂先生Vα这样

  

1.X ∈ M,M是传递的。

  

2.M的每个元素在Vα中从序数可定义参数。

  

我(ZF)选择的公理在霍德那里成立。

  

我是⊆·霍德。

  

I HOD是所有传递集M的并集,使得每个

  

M的元素在V中可由序参数定义。

  

我被G odel的回答打动了。

  

固定集合

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

白色梦非语 连载中
白色梦非语
言君竹
这是一个随笔记录,记录一下我那随时爆发灵感的小宇宙还有生活中没有办法说和别人诉说的一些事情…… 各位看官,本文瞎胡写,我就这么一说您也就这么......
0.4万字1年前
历喵:杀戮之地 连载中
历喵:杀戮之地
韵韵的瓜子吖!
欢迎來到杀戮之地,我在这里等待你的到来
0.7万字1年前
小女子不才,未得公子青睐 连载中
小女子不才,未得公子青睐
该用户已注销
小女子不才未得公子青睐扰公子良久公子勿怪公子向北走小女子向南瞧此生就此别过了难以忘怀
31.2万字1年前
绑架公主计划 连载中
绑架公主计划
千乐幻音
传说在黑暗森林中,生活着世上最古老的魔种——黑龙。她是黑暗与暴虐的象征,是黑暗魔法的具象,是黑暗森林永远的王。有人说,她沉睡了千年,因人类公......
24.1万字1年前
KPL:混杂 连载中
KPL:混杂
恒_LH
【彼方冬屿】一些无脑的CP文合集更新时间:每周六周日三更,若有特殊情况会告知CP随机(也可投稿CP写作故事)内容纯属虚构阳一:已完结桃酷:连......
4.1万字1年前
知溪仙 连载中
知溪仙
墨年华
神界和魔界一直以来战争不断,如今,看似风平浪静,实则波涛汹涌
6.0万字1年前