数学联邦政治世界观
超小超大

(特殊篇章)哥德尔可构造宇宙L第二版本 (3-1)

8.2 哥德尔的 L

以下我们专注于哥德尔可构成集的构造。

8.2.1.定义 对任意α,我们递归定义序列 Lα 如下:

(1) L₀=∅;

(2) Lα₊₁=Def(Lα);

(3) 对任意极限序数α,Lα=∪ᵦ<α Lᵦ。

同时我们还定义

L=∪ Lα, (8.6)

α∈On

L的元素称为可构成集。

L 与 V 的构造不同、我们在后继步骤中不是加入所有的子集,而是加入在已有层谱中可定义的子集。虽然如此,许多关于 Vα 的性质,如果它的证明中只用到了 Vα 的某些可定义子集也在 Vα₊₁中,则这些性质对 Lα 也是成立的。

8.2.2.引理 对任意序数α,

(1) Lα是传递的;

(2)如果α<β,则 Lα ⊆ Lᵦ。

(3) Lα ⊆ Vα。

证明.如果α=0,则(1),(2)显然成立。假设命题对 β 成立,并且α=β+1,则Lα=Def(Lᵦ)。由引理 8.1.10,Lᵦ ⊆ Lα ⊆ P(Lᵦ),所以

(1),(2)都成立。(3)显然。 □

8.2.3.定义 如果x∈L,x 在 L 中的秩 rank˪(x) 定义为

rank˪(x)=min{β│x ∈ Lᵦ₊₁}。 (8.7)

8.2.4.引理 对任意α,

Lα={x∈L│rank˪(x)<α}。 (8.8)

证明. 显然。 □

与 Vα 类似的是,如果x∈L 且 rank˪=β,则 x ⊆ Lᵦ,x ∉ Lᵦ,但 x ∈ Lᵦ₊₁。而与Vα不同的是,经常会有以下情况出现,Lᵦ的一些子集虽然属于 L 但不属于Lᵦ₊₁。以下引理是说,这种情况不会发生在序数身上,序数在L和 V 中的位置是一样的。

8.2.5. 引理 对任意序数 α,

(1)Lα ∩ On=α;

(2) α ∈ L ∧ rank˪(α)=α。

证明.

(1)施归纳于α。如果α=0或 α 是极限序数,则是显然的。如果α=β+1并且Lᵦ ∩ On=β。因为 Lα ⊆ P(Lᵦ) ⊆ P(Vᵦ),所以Lα ∩ On ⊆ Vα ∩ On=α,另一方面,β=Lᵦ ∩ On ⊆ Lα ∩ On,所以我们只需证明 β ∈ Lα,而这又只需证明β ∈ Def(Lᵦ)。

我们知道“β是序数”对任意传递集是绝对的,所以

β=Lᵦ∩On={η ∈ Lᵦ│η是序数}={η ∈ Lᵦ│(η 是序数)ᴸβ} ∈ Def(Lᵦ)。

(2) 由 (1),任意α ∈ Lα₊₁。 □

8.2.6.引理 对任意序数 α,

(1) Lα ∈ Lα₊₁;

(2) Lα 的任意有穷子集属于Lα₊₁;

证明.对于(1),Lα={x ∈ Lα│(x=x)ᴸα}。

(2)是引理8.1.10的推论。 □

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

与明星对话 连载中
与明星对话
love琦923
不同的明星,不同的性格
0.1万字6个月前
猫武士火星疯了 连载中
猫武士火星疯了
柔柔爱睡觉
这是一篇小说,希望你们能鼓励一下我
0.2万字5个月前
血澜的经历(我给我OC写的文,好不好看烂不烂别管) 连载中
血澜的经历(我给我OC写的文,好不好看烂不烂别管)
啊啊啊啊_510171519730164
0.1万字5个月前
风中埋葬你的笑 连载中
风中埋葬你的笑
雪秀儿
——嘿……你还会笑吗?被强迫和自己不喜欢的人待在一起是什么样的感觉?他经过亲身体会后,得来的感受是:想要逃离,然后习惯,慢慢地了解,继而爱上......
13.7万字5个月前
山不归封面铺 连载中
山不归封面铺
该用户已注销
【推隔壁无偿封面铺《矢渝无偿封面铺》,要求具体看第151章。】(请多多支持新书!)美工:沈宿芊,江辞洛。不招美工。可下单:校园,总裁,素锦,......
1.0万字5个月前
修仙模拟器:地狱开局也不怕 连载中
修仙模拟器:地狱开局也不怕
满城飞絮里
苏瑶,意外穿越修真界。她本普通人,却因神秘的人生模拟器,成为天选之女。由于体质特殊,苏瑶被迫进入声名狼藉的合欢宗。原以为这里是一群放浪形骸的......
1.1万字5个月前