数学联邦政治世界观
超小超大

Henkin定理 (4-4)

当且仅当,t≡s∈Φ。

2) r (φ)>0。此时φ为布尔式或量化式∃xψ。

i)φ为布尔式情形,证明同引

理3.1。

ii)φ=∃xψ。σΦ (φ)=T,

当且仅当,存在Ը-项t,使得σΦ ( [t]/x) (ψ) =T,

当且仅当,存在Ը-项t,使得σΦ ( σΦ (t) /x)(ψ)=T(引理4.5),

当且仅当,存在Ը-项t,使得σΦ ( ψ (t/x) )=T(代入引理),

当且仅当,存在Ը-项t,使得 ψ (t/x)∈φ (归纳假设,r (ψ (t/x) =r (ψ)<r (∃xψ),第三章习题6.7-3),

当且仅当,∃xψ∈Φ (Φ包含证据)。

4.7 习题 设语言Ը不含全称量词∀,Φ是包含证据的i-极大一致Ը-公式集。证明:存在Ը-解释σ,使得对任何Ը-公式φ,

σ (φ)=T,当且仅当,φ∈Φ。

(提示:按4.1—4.6的思路,在「Φ是i-极大一致集」的前提下,证明对应的结果。)

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

花开蝶自来 连载中
花开蝶自来
提笔纸上
花开了,蝴蝶就来了,一直如此,永远不变。婳蝶and花想容
0.6万字1个月前
修仙纪1 连载中
修仙纪1
为你而等待,只为一个答案
这是一个没有神仙,只有修仙者的时代
92.8万字1个月前
末世:满级大佬重生后,拐走社恐小反派 连载中
末世:满级大佬重生后,拐走社恐小反派
KL-forever
【已签约,每天一更或两更,至少两千字,欢迎收藏】末世最强基地满级大佬叶秋漓不过是在度假的过程中睡了一觉,再次醒来发现自己竟然重生回了末世前一......
10.5万字1个月前
桃花公子 连载中
桃花公子
中国天子
10.0万字1个月前
红璃陨落,北洋骤然 连载中
红璃陨落,北洋骤然
迷恋青青
《红璃陨落,北洋骤然》这是双女主哦!讲的是来自恶魔一族的红璃与天使一族的北洋违规了族群里的条约。与恶魔/天使族的公主成了朋友。两族因为这事开......
1.5万字1个月前
光与暗的共鸣 连载中
光与暗的共鸣
灰喜
他只是变了......
1.0万字1个月前