数学联邦政治世界观
超小超大

Henkin定理 (4-1)

现在我们前进到一阶语言里,考虑整个经典逻辑的完全性。

首先简化一下语言。由第四、五章的相关内容我们知道,在经典逻辑中,可以把∀xφ 看作

¬∃x¬φ的缩写,从而在语言的初始符号中去除∀。这样改变的语言,与原来的语言有相同的表达力,相同的(经典)语义与语形后承关系。因此,在新语言里证明的经典完全性,对原来的语言同样成立。为了简化证明步骤,我们假定本节的Ը不含∀,其中的量词只有∃一个。

然后我们梳理证明的总体思路。

同命题逻辑的情形一样,完全性证明的关键步骤是得到可满足性引理;同前面的区别是,这里的可满足性引理是针对一阶公式集的,因此还要处理谓词、等词和量词带来的问题。按照前面描述的 Henkin方法,我们既然已经有了把一致集扩充为极大一致集的办法,那么目前的任务就是对于给定的极大一致集,找到一个满足其中的素公式的解释。就是说,给定极大一致Ը-公式集Φ,我们要定义一个Ը-解释σ=〈,ρ〉,使得:

第一,对于Ը的原子公式φ,

σ (φ)=T当且仅当φ∈Φ。

第二,对于Ը的量化式∃xφ,

σ (∃xφ)=T当且仅当∃xφ∈Φ。按照满足概念的定义,这相当于要求:

1)对于Ը-原子公式Pt ₁,···,t ₙ,Pt ₁ ··· t ₙ ∈Φ当且仅当σ (t ₁),···,σ (t ₙ) )。

2)对于Ը-等式t≡s,t≡s∈Φ中当且仅当σ (t)=σ (s)。

3)对于Ը-量化式 ∃xφ,∃xφ∈Φ,当且仅当,存在a∈A,使得σ (a/x) (φ)=T。

我们逐条分析这些要求。

1) 是针对σ的论域和其中的基本关系的,它要求,一旦 Φ「规定」了Pt ₁,···t ₙ,那么这些项对应的个体在论域中就恰好具有P表达的关系。我们如何找到一个这样一个论域呢?显然不能凭空造出一个论域。可我们有什么东西可资利用呢?我们现在仅有的资源是语言Ը及其中的项与公式,它们是一些语形对象(符号串),我们曾经说过,语形对象需要跟语义对象区别开来,一边是语言符号,一边是世界里的个体、关系和命题,前者表达后者,但不能混同于后者。

但是,Ը的符号串毕竟也是对象,因此我们能够使用某个语言Ը´谈论它们。在这个意义上,被谈论的Ը-串构成语言Ը´的论域。特别是,没有什么阻碍我们,让Ը´直接等于Ը,即让Ը述说自身。这不意味着我们混同了Ը的语形和语义,我们只是让符号串身兼二任。比如,我们可以令个体常项a指称a本身。作为语形对象,a是一个名字,而作为语义对象,a是某个名字的指称。同一个符号,扮演的角色不同,两个角色,没有在这里混淆。实际上,这只是定义了结构中的解释函数ŋ,使得ŋ(a)=a。

回到1)的问题。既然1)要求项的语形「表现」跟语义「表现」相同,那么,一个自然的想法是:我们把项的语形「表现」直接「搬」到语义中去。具体而言,我们让语言Ը中的项直接充当个体而组成Ը的一个论域,然后定义解释σ,使得每个Ը-项t对应于论域中的个体t,即

(*) σ (t) =t。

进一步,对Ը的每个n元谓词P,我们如下定义它在这个论域中的解释:

(σ(t ₁),···,σ (t ₙ ) ),当且仅当,Pt ₁,···t ₙ,∈Φ。

这满足了1)的要求,其中的关键思想是:让语言中的项「指称」它们本身。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿:我在快穿世界撩女人 连载中
快穿:我在快穿世界撩女人
茜崽不吃瓜
顾梓安一个咸鱼,被快穿局招安,成为了快穿员本来想着靠系统躺平,没想到系统是个咸鱼?!OMG,魔法失灵了万事靠自己女人,都快快到我怀里来!
6.5万字1个月前
祈繁 连载中
祈繁
江小懒
我是白祈,云都白家洋太子。古繁,古家小爷。
29.5万字1个月前
带着少主坑天下 连载中
带着少主坑天下
未入画
这片妖魔纵横的世间,即将诞生一个奇迹。这是一个鲁莽凶残的小丫头坑遍天下的路程。齐不凡首次出山就把自己给坑进去了,不光多了个少主,还要帮其寻找......
102.1万字1个月前
执子手伴一生 连载中
执子手伴一生
殇ベ瞳荧
这本书是我和九幽V一起写的,由我来更新。男主韵是天帝第一废子,神龙绝脉,但却不知他后来不再是废子,天界众神官都知道韵只是天帝收养的义子,和天......
11.3万字1个月前
误落尘网中,一去十三年 连载中
误落尘网中,一去十三年
星河在北
一个南瓜的爆笑仙侠之旅
4.5万字1个月前
无辛 连载中
无辛
艾离
一封信,拐跑了一个人。一把剑,开启了新的篇章。时隔七年,魅染与绝月再次相聚,两人一起游历。在海族破解了诡异的诅咒,事情本该就此结束,但一个伤......
6.7万字1个月前