数学联邦政治世界观
超小超大

数学论文(柏拉图主义与集合论终极宇宙) (8-6)

定理3.2(库能,1970)假设U是κ上的κ完全的正则非主超滤,则在L[U]中,κ是一个可测基数,并且是唯一的可测基数

这实际地开启了内模型的研究计划,并且在随后的年代里,这个计划取得了相当的成功。目前人们已经能够构造可以容纳强基数的内模型。

但是,Ω猜想与已有的具有内模型的大基数都是相容的,所以要证明它不成立,我们需要容纳更大无穷的内模型。不唯如此,能证明Ω猜想不成立的大基数公理一定在大基数层谱中处于一个十分关键的位置,这一位置必定会有“来自内模型理论的证据”。(参见[9])

另一方面,如果Ω猜想在所有已知的大基数公理下都成立,那就是猜想在V中成立的强烈依据。而武丁有关终极L的研究表明,所有的证据都显示,没有任何已知的大基数公理会否证猜想。我们以下简述这一重要的思想。(在以下的讨论中,所有未注明的定理和定义都属于武丁。)

如果存在可测基数,则V≠L,所以L虽然具有很好的结构性质,并且V=L可以解决包括CH在内的独立性问题,但它不可能是新公理的候选,L与V相差太远了。库能的L[U]可以容纳可测基数,在这个意义上比L更接近V。但是,L[U]中只有一个可测基数,它甚至不能容纳第二个可测基数,更不必说更大的基数了。所以,最终的任务就成了构造一个可以容纳所有大基数的类L结构,人们将这样的结构称为“终极L”。这看起来是不能完成的任务,因为在构造容纳大基数的内模型的过程中,人们发现每向上一步,都只能得到仅仅包含一个相应大基数的模型,要想容纳所有的大基数,我们有无穷多个内模型需要构造。但是,武丁的一个重要发现彻底改变了这种情形,这又需要一些新的数学定义:

定义3.3假设N是一个ZFC的模型,δ是一个超紧基数,如果对任意λ>δ,存在Pδ(λ)一个δ-完全的正则精良超滤U满足:

(1)Pδ(λ)∩N∈U;

(2)U∩N∈N,

就称N是关于δ是超紧基数的弱扩张子模型(weakextendermodel)。

弱扩张子模型之所以重要,是因为它有我们需要的性质。首先,它十分接近V。就我们目前的问题而言,这意味着它有正确的基数概念。

定理3.4假设N是关于δ是超紧基数的弱扩张子模型,并且在N中,λ>δ是正则基数,则在V中,cf(λ)=|λ|。特别地,如果λ在V中依然是基数,则它在V中是正则的。

推论3.5假设N是关于δ是超紧基数的弱扩张子模型,并且在V中,γ>λ是奇异基数,则

(1)λ在N中是奇异基数;

(2)(γ+)N=γ+,即N能正确地计算奇异基数的后继。

不仅如此,与以往的内模型不同,弱扩张子模型可以容纳任意多的可测基数。

推论3.6假设N是关于δ是超紧基数的弱扩张子模型,并且在V中,κ>δ是奇异基数,则κ在N中是可测基数。

事实上,弱扩张子模型可以容纳δ以上的所有大基数!

定理3.7(普遍性)假设N是关于δ是超紧基数的弱扩张子模型,并且在V中,γ>δ是正则基数,并且

π:(H(κ+))N→(H(π(κ)+))N

是一个初等嵌入,并且crt(π)>δ,则π∈N。

也就是说,V中δ以上的大基数都在N中保持为δ以上的大基数。这不能不说是一个令人惊奇的结果。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

十星连 连载中
十星连
忻鸶
看着远在天边近在眼前的星星,独自闪耀却又相互牵依,十颗星星可以是各种形态千奇百怪,也可以是最后的依靠,和数不尽的慕思之情……“他们都问过我,......
1.8万字9个月前
随心所欲短篇文 连载中
随心所欲短篇文
waiter
各种风格的文章,各种性格的主角。有喜剧有悲剧,希望有人喜欢。
47.1万字8个月前
穿进游戏做女主 连载中
穿进游戏做女主
云兮雪
一朝穿越,我和原游戏女主同名,但绝不同命!谁说修仙女主一定是花瓶?你要一心谈恋爱,我却偏偏要走事业线!强化本命剑,捡到各种关键npc,保护好......
62.3万字8个月前
十二星座:我们的约定 连载中
十二星座:我们的约定
念玖辞
是救赎者留下的深沉深渊是深渊的守护者,是救赎是永恒的约定是记忆的深渊☆星海之约☆分支一:深渊记忆不可逆的深渊,不可逾越的记忆是期待,亦或者毁......
4.6万字8个月前
末世重生之不一样 连载中
末世重生之不一样
脆脆塔
(双男主+1V1专宠+一见钟情,金手指big)末世之前的强者柯子轩遭遇背叛,一睁眼回到了最初。实力,物资,还有……团队?刚重生的柯子轩从未想......
6.2万字8个月前
梦回万古之无泪非无情 连载中
梦回万古之无泪非无情
楠溪衍
【月寒文社】明月之身高挂幽冷寒映人间(本书已签约,勿抄袭,勿转载,违者一律追究法律责任)九万年前,她错信了人,痴心换来一场灭世浩劫,那一战,......
11.5万字8个月前