简单说,Vm是包含M并且对脱殊扩张和脱殊收缩封闭的最小模型类。由V生成的脱殊复宇宙记作V。
定义2.2(脱殊复宇宙的真)对任意ZFC的可数传递模型M,和对任意集合论语言中的语句σ,我们称
σ是M-脱殊复宇宙真的,当且仅当它在Vm的每个模型中都真,记作VM╞σ;
是M-脱殊复宇宙假的当且仅当VM╞┐σ;
σ是M-脱殊复宇宙无意义的当且仅当Vm╞/σ并且VM╞/-σ。
特别地,如果σ在由V生成的脱殊复宇宙中为真,则称σ是脱殊复宇宙真的,记作V乍口。其他概念类似。
根据推论1.4,如果VM的每个模型都满足“W是真类”,则PD是M脱殊复宇宙真的,根据定理1.5,对任意M,CH都是脱殊复宇宙无意义的。这看起来使得脱殊复宇宙立场比形式主义更精致,也更合理。似乎也在一定程度上回应了武丁的挑战。但是,武丁又通过一系列的数学工作论证了脱殊复宇宙立场难以成立,这需要定义武丁的Ω逻辑以及Ω猜想。
回忆一下,对任给结构『?』,『?』的理论定义为:
Th(『?』)={σ|ZFC╞“『?』σ”}。
仿此,我们定义任意结构烈在脱殊复宇宙真理观下的理论为:
ThM(『?』)={σ|╞“『?』╞σ”}
对任意语句σ,形如“对任意无穷序数α,Vα╞σ”的断言是ll2断言。事实上,脱殊复宇宙的真理概念只适用于ll2语句,这是因为我们在定义脱殊复宇宙真理概念时只允许使用集合力迫。令是最小的武丁基数,则H(时)卜σ和H(时)Fσ都是II2断言。因此,如果令
Mll2={σ|V╞σ并且σ是II2语句}
为所有II2多字宙真语句的集合,则ThM(H(δ0+))在集合Mll2中是递归的。但是,仿照塔斯基的真理不可定义性,相反的方向应该不能成立,人们把它总结成:第一多宇宙定律
所有I2多宇宙真语句的集合Mll2在H(δ0+)的脱殊复宇宙理论ThM(H(δ0+))中不是递归的。这一定律要求不能把整个集合宇宙中的所有II2真理,更不必说所有真理,归结为集合宇宙的一个片段H(δ0+)中的真理。这是一个合理的要求,因为如果脱殊复宇宙的模型类中只有V一个模型,则以上定律是显然成立的。
称一个集合YVω是借助多宇宙在H(δ0+)中可定义的,如果Y在多宇宙模型类的每个模型中都是在H(δ0+)中可定义的。出于同样的哲学考量,还可以有:第二多宇宙定律所有II2多宇宙真语句的集合M2不是借助多宇宙能在H(δ0+)中可定义的。如果脱殊复宇宙的真理观不能满足以上两条定律,那它与形式主义在根本哲学立场上就是一致的,即:
把整个集合宇宙的真归结为这个宇宙的某个清晰片段的真。
形式主义者把集合宇宙的真理归结为ZFC的定理,也就是归结为数论中的真,而脱殊复宇宙立场则是把集合宇宙的(lI2)真理归结为H(δ0+),全体基数不超过最小武丁基数的集合。哥德尔借用他的不完全性定理,曾对形式主义的这一立场做过令人信服的反对。[3])而武丁则同样令人信服地证明,以上形式的脱殊复宇宙立场必然违反这两个定律,所以与形式主义的真理观并无根本差别。
定义2.3(武丁,1999)假设T是集合论语言中的可数理论,σ是集合论语言中的语句,我们定义σ是T的Ω-逻辑后承,记作T╞Ωσ,当且仅当对任意完全布尔代数B,对任意序数α,如果VB╞T,则VB╞σ
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。