我们希望证明 A - 巨大基数和超 - 巨大基数的一致性强度大于任何先前的 con - 边形大 - 基数公理,不知道与 ZFC 不一致。
麦卡勒姆
我们将从定义[2]中讨论的一些大基数公理开始。
定义 3.1.我们说序数>满足拉沃公理,如果以下条件成立。有一个集合 N,使得 V1+1CNCV+2 和一个初等嵌入 j : L ( N )< L ( N),使得:
(1) N = L ( N ) N Vx +2 和 crit( J )< x ;(2) NN C L ( N );(3) 对于所有 F : VA +1→ N \{ W } 使得 F ∈ L ( N ) 存在 G : Vx +1→ Vx +1 使得 G € N 并且对于所有 A €V1+1, G ( A )€ F ( A )。
我们将在第6节末尾陈述一个引用拉沃公理的主张,但在本节中不再进一步提及。定义 3.2.我们将序列 ( Ea ( VA + i ): a < Tva +1) 定义为最大序列,使得以下序列成立。
(1) E ( Vα +1)= L ( Va +1) N Va +2 和 E ( Vα +1)= L ( Va +1)):NVa +2.(2)假设一个< Tv,而a是极限序数。那么 E (V1+1)= L ( U { Eg ( VA +1): B < a }) NVa +2.
(3)假设一个+1< Tv”。然后对于一些 X € E +1( V +1),E ( Vi +1)< X ,其中我们的意思是存在一个超射π:Vα +1→ E ( Vi +1) 与 T E L ( X , V +1),E +1( Vi +1)= L ( X ,V1+1) N V1+2,如果 +2< Tvs +1,则 Eα +2( Va +1)= L (( X , Vx +1)*) N Vx +2。
(4)假设一个< Tv 那么存在XCVi +1,使得E(Vi +1)CL(X,V1+1)并且有一个适当的基本em - 床上用品j : L ( X , VA +1)< L ( X , VA +1),这意味着J是临界点低于>的非平凡,对于所有X'€ L ( X ,V1+1) NVX +2,存在一个Y € L ( X ,V1 + 1) N Vi +2,使得(X,: i < w ) E L ( Y ,V1+1),其中Xo = X ' and Xt4+1= j (X1) 对于所有i ≥0。
(5)假设一个< Tv“是一个极限序数,设N = E(Vx +1)。
Then either
( 一 )( cof ( OM ))L ( N )<入,或
( 二 )( cof (⊕ N ))2( N )>》 和某些 Z € N , L ( N )=( HODv ,1u(2))2( N )。
这里 ON = sup { OL ( X .V +1): X € N } 其中 OXVx +1) 是序数 y 的上确界,可以作为域 V1+1 的超射的余域,其中射是 L (X, Vi +1) 的元素。
(6)假设一个+1是极限序数,并设N = E(V3+1)。
Then either
新的大 - 基数公理和终极 - L 程序
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。