数学联邦政治世界观
超小超大

数学论文(不可达基数的广义随机实压迫) (9-6)

--对于ǫ=ζ+1:

这是主要情况,因为我们在这里处理的是第(10)条确定函数的值。

定义以下集合:

Jǫ={r∈Qλ:r强制一个值~τ(ζ)∧pζ≤Qλr∧lg(tr(r))>αζ}并观察:

(a) 这个集合在pζ之上是稠密的:对于pζ≤p的所有p∈Qλ,我们将发现条件r强于p,强制值~τ(ζ)和,如果lg(tr(r))>αζ不成立,我们可以用足够长的主干将r扩展到更强的条件。

(b) 集合是开放的:对于所有q∈Jǫ和r≥q,q强制一个值~τ(ζ)和,因此r也是,lg(tr(r))≥lg(trq)>αζ,当然pζ≤q≤r。

现在定义一个集合∧={tr(r):r∈Jǫ},并且对于每个η∈∧,选择一些q,η∈{r∈J:tr(r)=η}。

选择一个集∧1ǫ⊆∧ǫ不同的η,Γ∈∧1ǫ,Γ/∈qǫ;允许q=q,η:η∈∧1。

•观察序列

qǫ=q \491,η:η∈∧1

因为:

(1) ∧1ǫ⊆T<λ。

(2) 对于所有η∈∧1,我们有q,η∈qλ⊆Q0λ

tr(qǫ,η)=η。

(3) 如果η,Γ∈∧1ǫ不同,则根据∧1的定义,

tr(qǫ,η)=η/∈q \491,η。

(4) r*qρ∈T<λ:(η∈∧1))(ρ∈qǫ,η)}=pζ;特别地,它属于Qλ⊆Q0λ

  

.观察到对于所有η∈∧1ǫ,q \491,η⊆pζ

因此r*qǫ⊆pζ。通过一个矛盾假设,Γ∈pζ\r*qǫ;然后有p[η]ζ≤QλQ,强制为~τ(ζ)及其数轴较长

比az,所以q∈Jǫ和tr(q)∈L \491如果tr(q)∈L1qǫ与假设相矛盾;因此存在ν′∈L1ǫ。

那个tr(q)∈qǫ,ν′∧tr(q \491,ν’)∈q,所以我们再次得到tr(q)∈rqǫ,但是后来连接矛盾ν和ν的选择qǫ矛盾。

对于所有的力t(g)?调用此值此外让Cí是一个与Sqǫ脱节的Club。

首先,定义俱乐部Eǫ的近似值。

e'ǫ={d∈Ez:d>az是一个极限序数,使得ν′∈L1ǫ8745;T<d→d∈Cν′,并且ν∈pgåT<d→ν∈qǫ或对于一些8712;T<dåL1 \491集合E'ǫ是l的Club:

•对于每增加一个序数序列都是关闭的是这样的,对所有人来说'ǫ和g#<l,它们的极限d。

当然是一个极限序数,属于Ez。此外,对于所有人ν′∈L1ǫ与lg(ν′)<d有j0<g这样对于所有j0,我们有lg(ν′)<dj(因为δ被定义为这些的极限)。然后∈Cν′,并且由于Cν′是一个Club,所以它遵循∈Cν',作为的极限dj:j0<j<g④。

最后,如果ν∈pgåT<d,则lg(ν)<lg(ν)<di∈T<di∈p∈T<d。如di∈E'ǫ。必要地,存在∈T<diåL1ǫ,使得ν∈qǫh,但显然是8712;T<dåL1 \491。

所以我们完了。

•否则不受约束,集合E'ǫ是由一些x<l?然后对于每个极限x<d∈Ez∈E'ǫ

所以(1)∃ν′∈L1

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

他的玫瑰庄园 连载中
他的玫瑰庄园
仟余QY
系统提示:【欢迎进入玫瑰庄园。】“我好像忘记了一个很重要的人…我能感觉到他就在这里。”“欢迎回来,这个属于我们的家。”厄尘×白洛——————......
0.4万字9个月前
猫武士闲大杂烩 连载中
猫武士闲大杂烩
沁雨微露
猫武士群聊啦,校园文啦,都写。
2.7万字9个月前
恐怖囚笼 连载中
恐怖囚笼
酱籽菲儿
求人气,我大大的眼睛里写满了无助,在线急等人气呀!有什么事可以加我qq联系我哟!
1.5万字8个月前
爱你一世,守你三生 连载中
爱你一世,守你三生
桐桐阿姊
『停更中』“雨浩,能在最后一刻想起你,亲吻你,真好,要记得我哦”“为什么,为什么这种事要让你来承担。。。我会守着你,等你醒来”
4.4万字8个月前
少年父子之我心无悔 连载中
少年父子之我心无悔
竹仙陶醉
为了争夺领地,仙域和魔域征战了数百万余年,仙域四大祖帝之圣帝,灵帝,仙帝和神帝先后攻占了大半魔域疆土,从而划分为圣域,灵域,仙域和神域。这四......
22.4万字8个月前
快穿之谁是我的心上人 连载中
快穿之谁是我的心上人
晚凉殿下
我不知道你是谁,也不记得你长什么样。但我知道你就是他。我的人生已经够灰暗了,如果唯一的光都消失了。那我还活着做什么?我很自私,我只是想让你陪......
4.0万字8个月前