数学联邦政治世界观
超小超大

数学论文(不可达基数的广义随机实压迫) (14-12)

这意味着p↾δ1,q↾δ1∈Qδ1。我们可以使用归纳假说得出的结论

(p↾δ1)x_(q↾δ1)=r↾δ1∈Qδ1;

因此r∈Q′δ。

(5) 考虑到强迫Qδ,假设它适用于Qδ1,其中δ1<δ:

•对于第一个方向,假设p和q是兼容的;因此存在r∈Qδ:r⊆p,Q。特别是tr(p),tr(Q)tr(r)

因此tr(p),tr(q)∈r⊆påq。

•对于另一个方向,假设tr(p)∈q∧tr(q)∈p,并记住对于一些节点η1,η2∈T<δ和脆弱集S1,S2⊆S*,

事实上,条件是p=p*η1,δ,S1,q=p*η2,δ,S2。

回想一下这个假设,并通过对称性假设η1η2。

设S=S1ŞS2,我们将证明p*η2,δ,S⊆påq;这是

实际上是强迫Qδ的一个条件,参见定义27。允许Γ∈p*η2,δ,S;第(4)条规定的可能性为:

-如果S没有最后一个元素:

如果ν∈2,那么ν∈q?作为η2p,得出ν p q。

如果为了一些§或2,δ1,Såδ1

那么根据归纳假设p§或2,d1,S∈⊆p∈q∈T<d1

所以ν∈p∈q。

*若S∈z<z∈p§或2,δ1,Såδ1

根据归纳假设

如果S1或S2有最后一个元素将低于sup(S),并且在所有的构造可能性中可以看出,这意味着ν∈p和ν∈q。

-如果S具有不成功的最后一个元素d1:

*如果ν∈p§或2,δ1,Såδ1,那么根据我们的归纳假设p§或2,d1,S∈⊆p∈q∈T<d1,所以ν∈p∈q。

*如果ν↾δ1∈limd1(p)§或2,δ1,Såδ1),则通过归纳假设p§或2,d1,S∈⊆p∈q∈T<d1,所以ν↾d1∈påq。对于S1、S2、S3中的每一个,如果它不包含(p或q),而如果它确实包含匹配条件,比如p,将具有ν↾d1∈limd1(p)⇒ν∈p。

-如果S具有成功的最后一个元素d1:

*如果ν∈p§或2,δ1,Såδ1,那么根据归纳法的假设,我们有p§或2,d1,S∈⊆p∈q∈T<d1,所以ν∈p∈q。

*如果ν∈limd1(p)§或2,δ1,Såδ1,那么根据归纳假设ν∈limd1(p∈q∈T<d1):

·在ν/∈limd1的情况下1.对于p,q中的每一个,如果S1或S2具有δ1作为它们的最后一个元素,ν∈p或ν∈q相应地。否则对应的S1或S2具有以下所有元素

根据定义27(4)中的可能性,ν∈påq。

•否则ν∈limd1 1.

(b)1,h′):h′L1};

对于p,q中的每一个,如果S1或S2具有δ1作为它们的最后一个元素,则由于ν∈limd1(påq)和由(④),ν包含在相应的条件。否则,对应的S1或S2下面有它的所有元素,因此有所有的可能性

定义27(4),ν∈påq。

如果ν↾d1∈p§或2,d,SåTδ1由于p§或2,d,SåT⊆påqåT1,因此ν∈påq,对于p的构造的任何可能性和q。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星座之精灵王国 连载中
星座之精灵王国
爱摆烂的笑笑
想好了会写。
0.1万字5个月前
冬雪似心冷 连载中
冬雪似心冷
陌欣星
小琪是一个凄惨的女生经历了许多最终被压垮生命最后一刻她却关心的是她的朋友家人或许她本就是不幸的
0.4万字5个月前
重生女配修仙之逆袭飞升 连载中
重生女配修仙之逆袭飞升
凝温可莱特
《已签约》#禁转载古色生香的房间,檀木床上躺着个粉雕玉琢,精致可爱的小人儿,女孩睫毛微颤,如玉冰肌,就此风华。不难看出长大后又是一位绝色天骄......
7.5万字5个月前
倚天屠龙记……泪……染 连载中
倚天屠龙记……泪……染
洛晓依(猪猪)
新版已发在另一账号上,ID姝离。书名:《倚天屠龙记:归离挽》
3.8万字5个月前
白蛇浮生3 连载中
白蛇浮生3
二零一四
讲的是白娘子与许仙的爱情故事,令人感到不已
0.8万字5个月前
该死的契约精神 连载中
该死的契约精神
玉卿然
误入系统,签订契约,多重人格,同学们团结完成任务后成功回到现实世界。
25.1万字5个月前