数学联邦政治世界观
超小超大

数学论文(不可达基数的广义随机实压迫) (14-10)

(iii)在定义27的情况(4)(c)中,δ1=max(S)。首先假设Γ∈p*η、 δ,S

满足lg(Γ)<max(S)=δ1。则Γ∈p*η、 δ1,Såδ1和根据归纳假说,存在一些Γ′∈limδ1(p*η、 δ1,Såδ1)

其中;根据定义,我们还得到了Γ′∈p*η、 δ,S

因此留下来证明任意ν∈p的声明§h、 d,S,使得lg(ν)≥Δ1;

对于任何推广ν∈limd(p§h、 d,S),ν′↾d1∈p§h、 d,S和

所以ν′↾x∈p§h、 d,S对于所有Δ1≤x<d。

(iv)在定义27的情形(4)(d)中,ν∈p§h、 d,Smax(S)和d1为

成功的设b e lg(ν):

(A) 首先假设b<d1。根据归纳假说一个节点ν■ν′,ν′■limd1(p§h、 d1,Så1)。现在证据分开了

分为几个案例:

情形1:如果ν′⑪∈lim?1 1.),则ν′p§h、 d,S所以我们有了将问题简化为情况β

情形2:如果ν′∈limd1(rď1.我们仍然知道因此∈r1.对一些人来说1.我们有1,̺,就这样是ν′′∈limd1 1,h),我们继续β。

(B) 其次,假设β≥Δ1。现在每一个可能的扩展都是在高度水平之后选择子句当然,在β级别的子句中有一个元素(4) (c)(ii)。

(c) 在后续级别中,采用Q0中定义的所有扩展d

(d) 集合S是脆弱的,并且Sp⊆S被下一个子句覆盖,所以Sp(的集合与M的水平)也是脆弱的。

现在我们可以看到p§h、 d,S∈Q′d:

•设d′为lg(tr(p))<d′∈S#;在的所有情况下都可以看到定义,p§h、 d,S↾d′P§h、 d'

“Såd′∈Qd′,所以我们完成了。

(4) 从定义上看,情况(4)(a)是琐碎的。对于案例(4)(b),我们将有那个Sp§h、 d,S=D′∈SSp§h、:d′,Såd′

因此通过诱导Sp。§h、 d,S⊆S.在情况(4)(c)中,Sp§h、 d。s=Sp§h、 d1,Så1

如果是的话(4) (d),Sp§h、 d。s=Sp§h、 d1,Så1或Sp§h、 d。s=Sp§h、 d1,Så1Ş{d1}。使用感应我们完了。

(5) 阅读定义27,明确y Q′δ ⊆ Q0δ和 Qδ ⊆ Q′遵循第(3)条因为

Qd={p§h、 d,S∈T<d和S∈d是脆弱的},

因此,caluse(5)在第(3)条之后。因此,第(5)条确实适用。

显示Qλ=Q′λ,矛盾地假设存在p∈Q′λ\Qλ,所以对于所有δ∈S*,p↾δ∈Qδ。设S=δ∈S*Sp↾δ。如果S有最后一个元素,那么对于一些δ*∈S*,S=Sp↾δ*等

p={Γ∈T<λ:∧∈p↾δ*∧↾δ*∈limδ*(p) },

当max(S)<δ时,并且根据定义27(4)的子句(c)和(d),p∈Qλ如下。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我在恐怖副本里逆袭 连载中
我在恐怖副本里逆袭
森系女生不存在
当一个女屌丝不甘现状时,恰好出现的副本能否助她一臂之力呢?
0.5万字4周前
落无 连载中
落无
厭殺
我们的相遇都是为了一个目的,明知着结果,却依旧是不顾一切,想要用尽一切,藏去那些“旧事”,可是,它是果。苏江厌:无论如何,你都是我的无尘,我......
25.1万字4周前
死亡后的世界 连载中
死亡后的世界
晓天使
(已完结)死亡后的世界,就好比一个;真人体验类,游戏世界。可惜,在死亡后的世界死后;是没有,轮会转生的。。。。。(女主升级流,男女主1V1)
10.5万字4周前
羽神传奇 连载中
羽神传奇
醉眼看浮沉
萧辰的头衔有很多,什么“战神”,“奶爸”,“教主”,“废物”,“黑马”等等。但在他自己看来,最契合的只有一个,那就是“愿主”。有人甚至会觉得......
17.2万字4周前
菀心向月却奈何壹 连载中
菀心向月却奈何壹
沉香南栀
本部已重修过菀心向月却奈何系列【共两部】北宫独大,另由鬼谷宗师创立的域渊城、墨時宗师创立的雪陵、令羽宗师创立的碧岭、西岩宗师创立的齐钺阁这四......
7.1万字4周前
大中华寻宝记顺序混乱 连载中
大中华寻宝记顺序混乱
该用户已注销
把大中华寻宝记改写,并打乱起顺序
1.3万字4周前