数学联邦政治世界观
超小超大

数学论文(不可达基数的广义随机实压迫) (14-10)

(iii)在定义27的情况(4)(c)中,δ1=max(S)。首先假设Γ∈p*η、 δ,S

满足lg(Γ)<max(S)=δ1。则Γ∈p*η、 δ1,Såδ1和根据归纳假说,存在一些Γ′∈limδ1(p*η、 δ1,Såδ1)

其中;根据定义,我们还得到了Γ′∈p*η、 δ,S

因此留下来证明任意ν∈p的声明§h、 d,S,使得lg(ν)≥Δ1;

对于任何推广ν∈limd(p§h、 d,S),ν′↾d1∈p§h、 d,S和

所以ν′↾x∈p§h、 d,S对于所有Δ1≤x<d。

(iv)在定义27的情形(4)(d)中,ν∈p§h、 d,Smax(S)和d1为

成功的设b e lg(ν):

(A) 首先假设b<d1。根据归纳假说一个节点ν■ν′,ν′■limd1(p§h、 d1,Så1)。现在证据分开了

分为几个案例:

情形1:如果ν′⑪∈lim?1 1.),则ν′p§h、 d,S所以我们有了将问题简化为情况β

情形2:如果ν′∈limd1(rď1.我们仍然知道因此∈r1.对一些人来说1.我们有1,̺,就这样是ν′′∈limd1 1,h),我们继续β。

(B) 其次,假设β≥Δ1。现在每一个可能的扩展都是在高度水平之后选择子句当然,在β级别的子句中有一个元素(4) (c)(ii)。

(c) 在后续级别中,采用Q0中定义的所有扩展d

(d) 集合S是脆弱的,并且Sp⊆S被下一个子句覆盖,所以Sp(的集合与M的水平)也是脆弱的。

现在我们可以看到p§h、 d,S∈Q′d:

•设d′为lg(tr(p))<d′∈S#;在的所有情况下都可以看到定义,p§h、 d,S↾d′P§h、 d'

“Såd′∈Qd′,所以我们完成了。

(4) 从定义上看,情况(4)(a)是琐碎的。对于案例(4)(b),我们将有那个Sp§h、 d,S=D′∈SSp§h、:d′,Såd′

因此通过诱导Sp。§h、 d,S⊆S.在情况(4)(c)中,Sp§h、 d。s=Sp§h、 d1,Så1

如果是的话(4) (d),Sp§h、 d。s=Sp§h、 d1,Så1或Sp§h、 d。s=Sp§h、 d1,Så1Ş{d1}。使用感应我们完了。

(5) 阅读定义27,明确y Q′δ ⊆ Q0δ和 Qδ ⊆ Q′遵循第(3)条因为

Qd={p§h、 d,S∈T<d和S∈d是脆弱的},

因此,caluse(5)在第(3)条之后。因此,第(5)条确实适用。

显示Qλ=Q′λ,矛盾地假设存在p∈Q′λ\Qλ,所以对于所有δ∈S*,p↾δ∈Qδ。设S=δ∈S*Sp↾δ。如果S有最后一个元素,那么对于一些δ*∈S*,S=Sp↾δ*等

p={Γ∈T<λ:∧∈p↾δ*∧↾δ*∈limδ*(p) },

当max(S)<δ时,并且根据定义27(4)的子句(c)和(d),p∈Qλ如下。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

awdust番外 连载中
awdust番外
AW DUST
0.3万字9个月前
星际密语:遗忘星球的秘密 连载中
星际密语:遗忘星球的秘密
落竹采叶
0.3万字9个月前
蓝冰…… 连载中
蓝冰……
神奇的胡萝卜
0.3万字8个月前
少女爱乐丝 连载中
少女爱乐丝
利兹与青鸟
少女爱丽丝是洛神族的守护者神女,却因被族中的长老误会偷窃洛神族的守护宝石洛灵石。因而逃亡……在路上她遇到了吸血鬼希尔,两人之间会摩擦什么火花......
25.5万字8个月前
绝命末日 连载中
绝命末日
恶曜卜词
写人们因为不讲卫生而导致世界末日的来临
0.9万字8个月前
阿茶双赎(茶太狼) 连载中
阿茶双赎(茶太狼)
茶的星星
一个童年悲惨的完美女孩月羊羊,意外与银阿姨相遇,之后产生了一系列的小故事。不过,真的是意外吗?秘羊羊和月羊羊到底是死对头还是另有关系。茶太狼......
5.1万字8个月前