数学联邦政治世界观
超小超大

逻辑论文 (15-4)

(注意,由于T是r.e.,“T²Ω 在Sent中可以写成一句话。

因此,ii)是有道理的。)

证明:i)⇒ ii)设α∈On和B为c.B.a。设β<α

▪Q是c.B.a。

在VαB中,使得VαB²“V

▪βQ²T”。然后V B*

▪βQ²T.由i),V B*

▪βQ²和因此VαB²“V

▪βQ²“。

ii)⇒ i) 假设α∈On,B是c.B.a,VαB|=T。固定β>α,βa极限序数。由于T是r.e.,如果VβB|=“ψ∈T”,则ψ∈T,因此

VαB|=ψ。因此,VβB|=“Vα|=T“。

通过ii),VβB|=“T|=Ω “。因此VβB|=“Vα|=Ω “,我们得到VαB|=。

备注1.10。假设ZF C是一致的。此外,对于iv),假设VαB|=ZF C与ZF C一致,对于一些序数α和一些c.B.a.B.然后,

i) 如果对传递集来说,Γ是绝对的,那么ZF C`(Γ→ ∅ ²Ω ξ)。

ii)对于一些Γ∈Sent,ZF C δ`(Γ→ (∅²Ω ξ))。

iii)对于一些Γ∈Sent,ZF Cδ`((ZF C²Ω ξ)→ ξ)。

iv)对于一些Γ∈Sent,ZF Cδ`((ZF C²Ω “ZF C²Ω ξ”)→ (ZF C²Ω

ξ))。

证据:i)是明确的。ii)适用于可以强制为true和false,例如CH。

iii)设ξ=“∃β(Vβ²ZF C)”。设M是ZF C的一个模型α和M中的每个B,MαB6|=ZF C(称这种情况为1),则M²“ZF C²Ω“+”。否则,设β最小,使得MβB|=ZF C,对于一些B。

则MβB是ZF C的一个模型,称之为N,并且具有对于α和每一个c.B.a.c,NαC6|=ZF c。所以,我们回到情况1。

iv)考虑以下句子:ξ=“βγ(β<γ∧Vβ²ZF C∧Vγ²ZF C)”。

设M是ZF C的一个模型,使得M|=αB(VαB|=ZF C)。如果每α和每个c.B.a.B,MαB6|=ξ(称为情况1),则M²(ZF c²Ω“ZF C²Ω ξ“)+(ZF C²Ω ξ)。

如果对于一些α和B,MαB|=ξ,则设γ是最小序数,使得MγB²ZF C+β(VβB²zfc)。设N为MγB。则N具有属性对于每一个α和每一个C,NαC6|=ξ,所以我们回到情况1。

定理1.11(²的非紧性Ω). 存在TÜ{⏴}⊆发送为T²Ω 但是对于所有有限的S⊆T,S2Ω ▪。

证明:设ξ0为断言句子:存在最大极限序数。

对于每个n∈ω,n>0,设ξn是断言的句子:如果α是最大的

极限序数,则α+n存在。

最后,设ξ为断言的句子:每个序数都有一个后继词。

设T={ξn:n∈ω}。

然后,T|=Ω ▪。但是如果S⊆T是有限的,那么S 6|=Ω ▪。

通过更多的工作,我们可以证明²的紧致度Ω 也失败

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

师父好香 连载中
师父好香
爆炸中的黄玫瑰
……
0.0万字9个月前
记录心境的奇怪 连载中
记录心境的奇怪
金鱼球
发疯日常而已顺便记录一下自己
0.6万字8个月前
随笔合集故事 连载中
随笔合集故事
禾鹘
用于记录一些突然想起来的短故事,也是为后面几篇文的挑选做铺垫(⌯¤̴̶̷̀ᴗ¤̴̶̷́⌯︎)✧咱们也可以看看我其他的文哦!!也会有一部分是同......
0.5万字8个月前
那些年我看过的奇迹暖暖系统文(小总结) 连载中
那些年我看过的奇迹暖暖系统文(小总结)
灧滟
给想看同类型文的姐妹们做个指路(*¯︶¯*)
0.9万字8个月前
快穿之倒追那个男人 连载中
快穿之倒追那个男人
爱吃香菜的螺蛳粉
第一个世界:那个校园里的小可怜第二个世界:那个阴阳怪气的上司
2.2万字8个月前
南懿浔 连载中
南懿浔
渡风客
〖涅槃文学社〗乾坤未定,你我皆是黑马!花落微本是天上这养尊处优的妖帝,奈何阴差阳错只得坠入凡尘。在天界就和她有婚约的圣子也追寻至此。妖帝遇见......
8.4万字8个月前