数学联邦政治世界观
超小超大

逻辑论文 (15-15)

证明:让A和BΩψ和Γ的T-证明。让我们看看

A×B是Ωθ的T-证明。设M是一个A×B闭模型。因此,M是A闭合和B闭合。假设α∈M∈On和B∈M是这样的MαB²T。由于M是A闭的,MαB平方ψ,并且由于M是B闭的,因此MαB m2ξ。

因此,MαB²θ。

Ω-可证明性不同于通常的可证明性概念,例如,在一阶逻辑中,不涉及演绎演算。在里面Ω-逻辑,相同的uB集可能见证Ω-不同句子的可证明性。

例如,在Ω-逻辑,即∅。在里面

尽管如此,在Ω-思维方式中,

这可以通过几种方式来实现。例如:对于A⊆R,设MA是模型LκA(A,R),其中κA是(A,R)的最小可容许序数,

即,最小序数α>ω使得Lα(A,R)是Kripke-Platek的模型集合论。以下结果归功于Solovay:

引理2.33。假设AD。那么对于每个A,B⊆R,A∈MB或B∈MA。

证明:考虑两人游戏,其中两人都玩整数

因此在游戏结束时,玩家I产生了x,而玩家II产生了y

当玩家I赢得游戏,当x∈A时↔ y∈B。τ是一个胜利

对于玩家I的策略,则对于每个实数z,z∈B iffτ*z∈A,依此类推

如果σ是玩家II的获胜策略,那么对于每个实数z,

z∈A iff z*σ6∈B,因此A∈MB。

因此,在AD下,对于A,B⊆R,我们有κA<κBiff A∈MB和B 6∈MA。由此得出κA=κB当MA=MB。

如果A是见证T`的实的uB集合Ω 那么我们可以说κA是ΩT-证明A.使用这个证明长度的概念,我们可以找到如下句子,如一阶逻辑中的G模型Rosser句子

不可判定的Ω-思维方式例如,设ξ(A,θ)为公式:

α((M是ZF c∧关于∧Mα|=ZF C)→ Mα|=θ)。

利用G模型的对角化,设θ∈Sent为:

ZF C`“θ↔ ∀A(ξ(A,θ)→ ∃B(ξ(B,θ)∧κB<κA))”

假设存在一个适当的Woodin基数类,我们有:

ZF C`Ω “θ↔ ∀A(ξ(A,θ)→ ∃B(ξ(B,θ)∧κB<κA))

“假设ZF C`Ω θ和C见证了它。然后ZF C`Ω “→ ∃B(ξ(B,θ)∧κB<κA))

“由一些D见证。假设Woodin有一个无法到达的极限基数,我们可以找到ZF C的C×D闭C.t.m.m

不可访问基数α,使得M满足对于实数的每个uB集A、 AD+在L(A,R)中成立,并且L(A、R)中的每组实数都是uB(见2.28)。

通过反射,设α∈MåOn使得CåM∈Mα,Mα|=“Cå uB”,以及

Mα|=ZF C+∀A(A是uB→ L(A,R)|=AD)。

那么,Mα|=θ

Mα|=“→ ∃B(ξ(B,θ)∧κB<κA))。”

此外,Mα|=ξ(CåM,θ)。因此,在Mα中存在B,使得ξ(B,θ)

κB<κ。但由于Mα|=“L(B,CåM,R)|=AD”,由引理

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

神明显灵 连载中
神明显灵
唐朝汐
1.2万字5个月前
重生:萧若瑾 连载中
重生:萧若瑾
云烟璃
主角雪阡陌本文雪阡陌没有正妻也没有侧妃本文与剧情不一样!!!all雪阡陌雪阡陌挚友门笛(五竹)雪阡陌重生不喜勿看!!!不喜勿喷!!!
0.5万字6个月前
为什么没有人看呵呵 连载中
为什么没有人看呵呵
下原远次呵呵
没有人看我就放飞自我了呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵呵......
0.2万字5个月前
舞法天女——命运怀表 连载中
舞法天女——命运怀表
Clairy顾辞潇
,想好了再改。
2.2万字5个月前
星冕与他的青梅竹马 连载中
星冕与他的青梅竹马
凌朝夕
那天他这个最高领导人,失去了他的光连着他的笑容也被她的消失带走了,别看了有事没事更新一点
0.7万字5个月前
兔年顶呱呱 连载中
兔年顶呱呱
紫棠墨
喜羊羊他们在拯救月球的过程中,遇到了和他们目的相同猫,并与和他们结为同伴。是谁派她们来的?喜羊羊的全家福中,为何会突然出现一个“黑影”?为何......
2.6万字5个月前