数学联邦政治世界观
超小超大

逻辑论文 (8-1)

注:(Ω-逻辑),(2/2)章节!

2.33,我们有Mα|=B∈MCåM。因此:

(1) MCåM|=ξ(CåM,θ)

(2) MCåM|=ξ(B,θ)。

设N∈MCåM是ZF c的一个Ct.M,它既是cåM-闭的又是Bclosed的(见注2.30)。那么,对于任何β,如果Nβ|=ZF c,则

Nβ|=θ∧,θ,这是不可能的。

一个完全对称的论点会在

假设ZF C`Ω θ,从而表明θ是不可判定的

在ZF C inΩ-思维方式中关于证明长度的一个更精细的概念Ω-逻辑由Wadge提供

实数集的层次结构(参见[9]和[16])。

我们现在将看到Ω 在强迫下也是不变的。在里面

为了证明这一点,我们将使用以下结果(见[6],第3.4节)。

定理2.34。假设存在一个适当的Woodin基数类,δ是Woodin基数,j:V→ M[G]是嵌入派生的

从P<δ的强迫。则V[G]中所有实数的泛Baire集是

普遍存在于M。

定理2.35。([17])假设存在一个适当的Woodin类大基数。然后对于所有P,

T`Ω ξiff

V P²“T`Ω “

证明:⇒) 让A成为ΩT-证明。

则L(A,R)²M(M是ZF c∧Mα|=T→ Mα²ξ)。

假设G⊆P是V-泛型。根据V〔G〕中的推论2.20,

L(AG,RV[G])²M(M是ZF c∧Mα|=T→ Mα²ξ)。

由于A是uB,根据备注2.6,AG是V[G]中的uB。因此,AG是ΩT-在V[G]中的Γ的证明。

⇐) 假设V P²“T`Ω “。设γ是一个强不可及基数P∈Vγ。选择一个Woodin基数δ>γ。考虑a=Pω1(Vγ)∈P<δ

(见事实1.4)。强迫P<δ低于a使Vγ可数,因此存在

偏序的P-名称τ,使得P<δ(a)强迫等价于P*τ。

固定G⊆P<δ(a)V-泛型,设j:V→ M是诱导嵌入。

那么j(δ)=δ和V[G]²M<δ⊆M。我们有V[G]=V[H0][H1] H0⊆P,V-属。因此,V[H0]²“T`Ω “,由一些uB集合A见证。

根据这个定理的另一个方向,V[G]²“T`Ω “,由AG见证。

因此

V〔G〕²“AG是uB∧N∀α(N是ZF c∧α∈关于∧Nα|=T→ Nα²ξ)“。

根据定理2.34,AG是M中的一个uB集,并且由于M在可计数序列,

M²“N(N是ZF c∧→Nα²ξ)“。因此,M²“T`Ω “。通过应用诱导初等

嵌入,我们有V²“T`Ω “。

2.5.A-闭合与强A-闭合。

回想(定义2.16)对于A⊆R,(A

的片段)ZF C是强A闭的,如果对于所有偏序集P∈M和所有M属G⊆P,M[G]∈A∈M[G]。

我们将看到Ω 如果我们使用

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星光星院 连载中
星光星院
熙安湘
在一个遥远的玄幻世界中,人类世界与魔法世界相互依存,维持着微妙的平衡。这个人类世界,有一个被称为“星光学院”的神秘地方。这里汇聚了来自各地拥......
5.4万字9个月前
穿越兽世做大厨 连载中
穿越兽世做大厨
彗星糯米团
人间百味,百味俱全。夏子悠的最大爱好就是研究美食,谁知在山里寻觅食材时一不小心就穿到了兽人满地跑的兽世,只是如雌性坐拥遍地美男这类事都只是传......
25.9万字9个月前
赠予的玫瑰 连载中
赠予的玫瑰
暗亚行秋
谁不是灿烂的玫瑰呢
0.8万字9个月前
拜托了,巨龙先生 连载中
拜托了,巨龙先生
许歉离
这回,骑士不会拯救公主,而是公主拯救国家。这回,巨龙不会杀害公主,而是爱上了她。他们之间究竟会发生什么样的故事呢?
0.2万字9个月前
十二星,命定守护者 连载中
十二星,命定守护者
羊崽崽a
这本书是解释作者小号“丘妄雪”那号上«新葫,命中塔罗»的十二星座守护者的故事,主要是要怎么成为星界十二星座守护者的,然后为什么会变坏。之所以......
2.8万字9个月前
穿越仙剑三之那年花开只为你 连载中
穿越仙剑三之那年花开只为你
她姓杨,我信仰~幂
这是为重楼写的一篇文,希望大家喜欢,有不好的地方请说出来,会认真的改
1.6万字9个月前