数学联邦政治世界观
超小超大

逻辑论文 (8-1)

注:(Ω-逻辑),(2/2)章节!

2.33,我们有Mα|=B∈MCåM。因此:

(1) MCåM|=ξ(CåM,θ)

(2) MCåM|=ξ(B,θ)。

设N∈MCåM是ZF c的一个Ct.M,它既是cåM-闭的又是Bclosed的(见注2.30)。那么,对于任何β,如果Nβ|=ZF c,则

Nβ|=θ∧,θ,这是不可能的。

一个完全对称的论点会在

假设ZF C`Ω θ,从而表明θ是不可判定的

在ZF C inΩ-思维方式中关于证明长度的一个更精细的概念Ω-逻辑由Wadge提供

实数集的层次结构(参见[9]和[16])。

我们现在将看到Ω 在强迫下也是不变的。在里面

为了证明这一点,我们将使用以下结果(见[6],第3.4节)。

定理2.34。假设存在一个适当的Woodin基数类,δ是Woodin基数,j:V→ M[G]是嵌入派生的

从P<δ的强迫。则V[G]中所有实数的泛Baire集是

普遍存在于M。

定理2.35。([17])假设存在一个适当的Woodin类大基数。然后对于所有P,

T`Ω ξiff

V P²“T`Ω “

证明:⇒) 让A成为ΩT-证明。

则L(A,R)²M(M是ZF c∧Mα|=T→ Mα²ξ)。

假设G⊆P是V-泛型。根据V〔G〕中的推论2.20,

L(AG,RV[G])²M(M是ZF c∧Mα|=T→ Mα²ξ)。

由于A是uB,根据备注2.6,AG是V[G]中的uB。因此,AG是ΩT-在V[G]中的Γ的证明。

⇐) 假设V P²“T`Ω “。设γ是一个强不可及基数P∈Vγ。选择一个Woodin基数δ>γ。考虑a=Pω1(Vγ)∈P<δ

(见事实1.4)。强迫P<δ低于a使Vγ可数,因此存在

偏序的P-名称τ,使得P<δ(a)强迫等价于P*τ。

固定G⊆P<δ(a)V-泛型,设j:V→ M是诱导嵌入。

那么j(δ)=δ和V[G]²M<δ⊆M。我们有V[G]=V[H0][H1] H0⊆P,V-属。因此,V[H0]²“T`Ω “,由一些uB集合A见证。

根据这个定理的另一个方向,V[G]²“T`Ω “,由AG见证。

因此

V〔G〕²“AG是uB∧N∀α(N是ZF c∧α∈关于∧Nα|=T→ Nα²ξ)“。

根据定理2.34,AG是M中的一个uB集,并且由于M在可计数序列,

M²“N(N是ZF c∧→Nα²ξ)“。因此,M²“T`Ω “。通过应用诱导初等

嵌入,我们有V²“T`Ω “。

2.5.A-闭合与强A-闭合。

回想(定义2.16)对于A⊆R,(A

的片段)ZF C是强A闭的,如果对于所有偏序集P∈M和所有M属G⊆P,M[G]∈A∈M[G]。

我们将看到Ω 如果我们使用

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

兽界——相识的他 连载中
兽界——相识的他
张洛滋
作品主讲洛繁和顾奇,讲述了他们相遇的故事
0.2万字6个月前
属于她的黑龙 连载中
属于她的黑龙
是条黑长虫龙
一个名叫龙幻界的地方她与她相遇,也和她相爱了,没人会阻止,因为她是能让世界毁灭的黑龙,她是唯一能驾驭的了黑龙的御兽师,她们创造了龙幻界一个又......
0.7万字6个月前
希腊神话之美杜莎的逆袭 连载中
希腊神话之美杜莎的逆袭
浅见幽香
异世死亡的女人与消亡的蛇发女妖机缘巧合相遇了于是女人代替了女妖,答应为其活出崭新的一生通过各种不懈的努力,最终成功改变原本的命运从此不断变强......
5.0万字6个月前
杂七杂八灵感集 连载中
杂七杂八灵感集
雪樱娜
这本书收录了我所有的灵感,包括自己编的小故事,星座的,葫芦的故事……故事一——霜生花主要人物:霜落,霜凝,黛瑞从霜源星上开始的故事,具体看霜......
0.3万字6个月前
傲娇师尊我是团宠碰不得 连载中
傲娇师尊我是团宠碰不得
囚慕狂颜
仙界奇闻,千年之前与魔尊决战的离夜仙尊,竟收了魔界最受宠的小公主为徒,还盛宠入骨?仙界众人:传闻不可信,不可信!直到某一天……小公主:“师父......
11.9万字6个月前
强势冥帝:拥她入怀共沉沦 连载中
强势冥帝:拥她入怀共沉沦
卡布奇诺不加糖奥
“呜呜,大人你欺负我。”“还不快给本王捶腿?”冥王凌眸一扫,悠然靠在床榻上,笑道,“夫人这般乖巧听话,何不如再娶一个?一个捶腿,一个揉肩?”......
10.9万字6个月前