数学联邦政治世界观
超小超大

逻辑论文 (15-14)

一个矛盾,假设在M中,对于一些b∈b,b°“M[*g] α|=,

其中*

g是通用筛选器的标准名称。根据2.14号提案,在M上存在gB-泛型,使得B∈g并且M[g]是A-闭的。我们有

M[g]α|=T。因此,通过ii)M[g]

强制M[*]g] α|=。

定义2.29。([17])对于Tõ{⏴}⊆Sent,我们写T`Ω 如果存在uB集合a⊆R使得:

1) L(A,

2) (A,R)中的每个集合都是uB,

3) 对于ZF c的所有A-闭c.t.m.m和所有α∈m∈On,如果

Mα|=T,则Mα|=ξ。

因此,根据定理2.28,如果存在一类适当的Woodin基数,T`Ω 如果存在一个uB集a⊆R,则上述3)成立。

注意,通过上述i)和ii)的等价性,如果T是递归的,那么点3)可以写成:

3')对于ZF c的所有A-闭合c.t.m.m,m²“t²Ω “。

根据定理2.28,如果存在一类适当的Woodin基数,或者如果只有L(R)|=AD,并且L(R)中的每一组实数都是uB,那么对于集合描述,T`Γ表示T`Ω ▪。然而,正如我们所料逆不成立:设M为ZF c的c.t.M,设α∈M∈On为使得Mα²ZF C。由于Mα是标准模型,Mα²CON(ZF C)。

这显示ZF C`Ω CON(ZF-C)。

我们说一个句子ξ∈Sent是ΩT-可证明的如果T`Ω ▪。如果A见证人T`Ω 那么我们说A是ΩT-证明,或证明A是Ω-来自T。

注意,如果A是uB并且满足定义2.29的1)和2),则A是一ΩΓiff的T-证明

L(A,R)²M(M是ZF c∧|=T→ Mα²ξ)。

不难看出,T’关系的复杂性Ω ⏴至多为∑3。

备注2.30。[7]中的参数本质上表明,如果AD+成立,那么对于每一组实数A,存在ZFC的A闭模型。

引理2.31。给定A,BuB集合,集合C=A×B是uB,如果M是则m既是a闭的又是B闭的。

证明:给定γ∈M∈On,设P=Coll(ω,γ)。对于固定的P名称

y表示B元素

▪G,{(τ,p)|p∈p,τ是实数的p-名,p°V(τ,

▪y)∈(A×B)

▪G}={(τ,p)|p∈p,τ是实数的p-名,p°Vτ∈a

▪G}。

因此,如果M是C-闭的,则该集合属于M,因此M是A-闭的。

对称地说,B也是如此。

推论2.32。设TŞ{ξ,ψ}⊆Sent。假设对于每个uB集合A,

L(A,R)|=AD+,并且P(R)中的每一个集合都是uB。

假设T`Ω ψ和T`Ω ▪。如果TŞ{ψ,ξ}`θ,则T`Ω θ。

因此

i) 如果T`Ω ξ和T`Ω ψ、 然后T`Ω Γ∧ψ。

ii)如果T`Ω ξ和T`Ω ⏴→ ψ、 然后T`Ω ψ。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

南堉 连载中
南堉
_沂州
我无数次轮就是为了拯救你
1.0万字6个月前
ch——无神论 连载中
ch——无神论
ch圈是我的精神支柱
我流清水文
0.1万字5个月前
魔王之恋2(DE) 连载中
魔王之恋2(DE)
开心_53013309082882668
有303和恐惧魔王儿子的戏哦∽
1.0万字5个月前
恭沁之瑶山缘起 连载中
恭沁之瑶山缘起
镜花妖梦
本是神界至尊,无爱无恨,无喜无嗔,因何深陷红尘?冰界初见,榣山定情,爱上太子长琴,宿命纠缠。人间再遇,相见不相识,相爱不相知,只观情,伤人伤......
11.3万字5个月前
永遠守護你 连载中
永遠守護你
厭殺
一场小意外让黎溪的生活发生了巨大的变化,自以为就一普通人,家里只是有点小钱,自已少了点记忆而已,但是事出后,她脸上的表情逐渐变得疯狂。“好家......
59.2万字5个月前
师父为夫:萌徒养成手册 连载中
师父为夫:萌徒养成手册
魂归暮里
【已签约】南笙璃作为仙狐族唯一公主,被人陷害降生凡间南渊皇族本应早夭的公主身上,天生魂魄残缺,却被绝美国师所救并收其为徒。国师将她一手带大,......
7.7万字5个月前