数学联邦政治世界观
超小超大

STEEL计划:证据框架 核心与终极-L (12-11)

回想一下,MM++指出,对于每一个保持平稳子集的偏序集P1,P的稠密开子集的每个集合{Dα:α<1},以及每个集合{α:α<1}的P-名称,对于1的平稳子集,存在一个滤波器G⊆P{Dα:α<1}的泛型(即GåDα=∅,都是α),并且使得α[G]是静止的1的子集,全部为α。众所周知,假设存在MM++超紧凑基数的。

定理4.6。如果ZFC加上超紧基数的存在是一致的,那么是MM++加GA。

证据设V满足ZFC加上超紧基数的存在性。强制结束V得到ZFC加MM++的模型。将此模型称为V[G]。然后用V[G]上的2向闭ORD长度迭代P以获得GA(如[23]中所述)。我们声称MM++在V[G][H]中成立。因为假设是一个P名称对于保持1的平稳子集的偏序集{

▪Dα:α<1}是的稠密开子集的集合,和{

▪α:α<1}是集合的P-名称of-1的固定子集的名称。允许做一个足够大的大基数和

▪Dα:α<1和{

▪α:α<1}是P-名称。自从P是2-方向闭合,与[18]中的论点类似,我们可以证明P保留MM++。

我们声称在V[G][H],偏序集[H]保留1的平稳子集:对于假设S⊆1是静止的

▪C是[H]-1的会子集的名称。自迭代的剩余部分不添加1的任何新子集,S也是静止的。在V[G][H]中。此外,由于俱乐部对于传递模型是绝对的[H]-V[G][H]上的一般滤波器也是[H]-V上的泛型],我们有在V[G][H]中,

▪C是[H]-1的会子集的名称。因此,由于在V[G][H]中偏序集]保留1的平稳子集,我们有[H]“Så

▪C=∅”。但是后者对于传递模型是绝对的,因此它在V[G][H中成立]。

此外,在V[G][H中]{

▪α[H]:α<1.}是-文件的名称1的子集。自MM++持有

五、[G][H],存在筛选器F⊆[H]

对于集合是通用的{

▪Dα[H]:α<1},并且使得

▪α[H][F]是不动的绝对地说,这在V[G][H]中也是正确的。这表明MM++持有在V[G][H]中。

从上面的定理可以得出,如果T=ZFC+存在一个超紧基数'是一致的,那么MVT的核心满足MM++也是一致的。此外,由于强制GA的类迭代P保留可扩展基数,如果理论T=ZFC+“存在一类适当的可扩展基数”是一致的,那么也是MVT加上核心满足MM++。此外,在这两种情况下,根据[3]中的结果core也满足Woodin(*)公理。

§5.探测钢铁公司的计划:作为终极L的核心。让我们来盘点一下。所有第3节和第4节中所示的结果表明,假设一类适当的可扩展基数,MV多元宇宙的核心存在,但仍然是一个高度不确定的对象特别是,我们已经看到,核心可能满足任何已知的最强强制公理,所有这些都意味着连续体具有大小ℵ2,也可能满足CH,就这一点而言,任何其他∑2集可强制语句,带参数(定理4.2)。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

AB柴群聊…… 连载中
AB柴群聊……
篱玥
……………………
0.1万字6个月前
查九同人:梦里童话 连载中
查九同人:梦里童话
瑜修祈
遇见你是梦里童话。a处女作记得看第一章的b部分b没封面好可怜(摊手)文笔渣好像也不配(摊手)
0.4万字6个月前
无限流:明日之诗 连载中
无限流:明日之诗
须余
一个不平静的夜晚,发生了一件不寻常的事。自称神明的少女来到这里,轻抚着土地,她说:“我们想救你。”她将整个世界拉入琉刹。她说:“我们会救你。......
0.1万字5个月前
祖神谈个恋爱不 连载中
祖神谈个恋爱不
长君不悔
与鬼通,与神行。莫问来路,给钱就行。此书原创,不要都是虚构,都是作者的奇奇怪怪的脑洞。ps:无论文好不好,都不希望被抄袭,搬运。里面我自创的......
13.1万字5个月前
风起苍岚之名满修仙界 连载中
风起苍岚之名满修仙界
折枝入画
……
2.8万字5个月前
憧憬成为魔法少女的我为什么会变成反派啊喂 连载中
憧憬成为魔法少女的我为什么会变成反派啊喂
大病初郁
她就是一个普通的女孩子,有一天在厕所里遇到一个神秘人,神秘人问,你要成为魔法少女吗?她欣然答应,然后,就成为了魔法少女的对立面。
0.8万字5个月前