让(n,∈)be的传递崩溃,且让G=π[H].因为π(P)∈普通,G是π(P)-通用结束V和普通是transitive,G是π(P)-通用
超过普通.自从Π¹集合对于传递模型是绝对的ZF角和A是
∏¹₁.在V[G],A普通[G]=普通[G]∩A=普通[G]∩A∩V[G]=普通[G]∩Aⱽ[G].和因为Aⱽ[G]=Aɢ,
A普通[G]=普通[G]∩Aɢ∈普通[G].
因为M是一个ω-模型,传递性崩溃π标识是否在因此,
Aᴹ[ᴴ]=M[H]∩Aʜ∈M[H].
二)⇒我)假设(M,E)是A-对于每个Π关闭¹₁设置。那就是了-关闭,因为是TΠ因此由引理2.22,是有理有据的。□
2.3.广告+.
Definition2.24.(cf.[12])AsetA⊆Ris∞-BorelifforsomeS∪{α}⊆On
andsomeformulawithtwofreevariablesφ(х,g),
A={g∈R│Lα[S,g]⊨φ(S,g)}.
AssumingAD+DC,asetofrealsAis∞-BoreliffA∈L(S,R),forsome
S⊆Ord(cf.[12]).
Definition2.25.Θistheleastordinalowhichisnottherangeofany
functionπ:R→α.So.iftherealscanbewellordered,thenΘ=(2ω)⁺.
RecallthatDCʀisthestatement:
∀R(R⊆ωω×ωω∧∀х∈ωω∃g∈ωω((х,g)∈R)→
∃f∈(ωω)ω∀n∈ω((f(n),f(n+1))∈R)).
Definition2.26.(cf.[12])(ZF+DCʀ)AD⁺says:
i)Everysetofrealsis∞-Borel.
ii)Ifλ<Θandπ:λω→ωωisacontinuousfunction,whereλhasbeen
giventhediscretetopology,thenπ⁻¹(A)isdeterminedforeveryA⊆ωω.
AD⁺triviallyimpliesAD,anditisnotknownifADimpliesAD⁺.
WoodinhasshownthatifL(R)╞AD.thenL(R)╞AD⁺.
AD⁺isabsoluteforinnermodelscontainingallthereals:
Theorem2.27.(cf.[12])(AD⁺)ForanytransitiveinnermodelMofZFwithR⊆M,M⊨AD⁺.
Theorem2.28.([12])IftherecristsaproperclassofWoodincarlinalsand
A⊆RisuBthen:
1)L(A,R)╞AD⁺.
2)EuergsetinP(R)∩L(A,R)is uB.
16JOANBAGARIA,NEUSCASTELLS,ANDPAULLARSON
2.finitionof⊢ΩFoandinvarianceunderforcing.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。