数学联邦政治世界观
超小超大

特殊篇章(哥德尔可构造宇宙) (11-2)

定理(康托尔)

  

所有自然数的集合N和所有实数的集合R

  

不具有相同的基数。

  

I无穷大真的有不同的“大小”!

  

连续统假说

  

假设⊆ R是无穷大。那么要么:

  

1.a和N有相同的基数,或者

2.a和R有相同的基数。

  

这是康托的连续统假说。

  

许多人试图解决连续统的问题假设并失败了。

  

连续统假说的问题很快就出现了

  

被广泛认为是所有问题中最重要的问题之一

  

现代数学。

  

1940年,G odel证明了它与集合的公理是一致的

  

连续统假说为真的理论。

  

没有人能反驳连续统假说。

  

1963年7月4日,科恩​在伯克利的一次演讲中宣布

  

这与集合论的公理是一致的

  

连续统假设是错误的。

  

没有人能证明连续统假说。

  

科恩方法

  

如果M是ZFC的模型,那么M就包含了虚拟世界的“蓝图”

  

ZFC的模型N,它放大了m。这些蓝图可以从m内部构建和分析。

  

如果M是可数的,那么在M内构造的每个蓝图可以实现为m的真正放大。

  

科恩证明了ZFC的每个模型都包含一个蓝图

  

对于连续统假设是假的。

  

科恩的方法还表明,ZFC的每一个模型包含了一个扩大的蓝图

  

连续统假说是真的。

  

(Levy-Solovay)这些放大保存大基数

  

公理:

  

如果大基数公理能有所帮助

  

我只能以某种意想不到的方式。

  

科恩方法的范围:它不仅仅是关于CH

  

一个挑战V概念的时代

  

科恩的方法在过去的50年里有了很大的发展

  

从科恩的原著开始。

  

许多问题已经被证明是无法解决的,包括

  

集合论之外的问题:

  

I(群论)白石问题(Shelah)

  

I(解析)卡普兰斯基猜想(Solovay)

  

(实直线的组合学​)苏斯林的问题

  

(索洛维​-坦**姆、延森、耶赫)

  

I(测度论)Borel猜想(拉沃尔)

  

I(算子代数)Brown-Douglas-Filmore自同构

  

问题(菲利普斯-韦弗,法拉)

  

这是对……概念的严重挑战

  

数学无限。

  

I这些例子,包括连续统假说,都是关于Vω+2的陈述。

  

好吧,也许是时候放弃了

  

要求

  

I大基数公理是不可证明的;

  

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

来世还在茉莉树下重逢好吗好的 连载中
来世还在茉莉树下重逢好吗好的
禾秋CANY
“望庐思其人,入室想所历。”顾凌琛在茉莉树下遇见过一个鬼,自此那只鬼就一直跟着他,别人看不见,道士驱不走,他问鬼为什么要缠着他,鬼说它在等人......
3.8万字6个月前
蚀骨有名:随笔 连载中
蚀骨有名:随笔
岁始
先看温馨提示!!!为独立小故事,小随笔,全靠想象力1.王楚钦2.王楚钦
0.6万字6个月前
宝笛恋情 连载中
宝笛恋情
清井水
阿宝和门笛重生
0.5万字6个月前
赛与格2——真谛之光 连载中
赛与格2——真谛之光
逆转的老韩
经过上一次宇宙十二证的事件后,赛罗与格丽乔的感情越来越深厚,但是,那一天……格丽乔离赛罗而去,执着的追寻力量,激发了体内真谛之光的力量,逐渐......
5.6万字6个月前
前世今生只为情 连载中
前世今生只为情
凤月儿
夫妻失合,外敌入侵,血洗仙山。以身化花,以求来世。再世相遇,依旧恩怨不断,血流成河……“你爱我吗?”“当然爱了,不惜性命。”(已完本,请继续......
17.6万字6个月前
快穿之她身娇体软 连载中
快穿之她身娇体软
猫与鱼的爱情
林念安第一次感觉自己活得失败,背负深仇大恨还未报,就报别人骗了抹去了记忆,但还好答应了他。世界一:失去记忆的直播女主身份大揭秘世界二:灰暗的......
0.6万字6个月前