(二)⇒ (d):固定γ ∈ M ∩在.因为M ⊨ ZF角 和M 是可传递的,C壶(ω,γ)∈ M.让τ ∈ Mᶜ壶(ω,γ).在(b)中,存在p∈C壶(ω,γ)和σ₀ ∈ M科尔岛(ω,γ)到这样的程度B⊩ⱽ 科尔岛(ω,γ)M[G]∩Aɢ=σ₀.因为C壶(ω,γ)
是同质的,我们可以替换σ₀带着山口l(ω,γ)-姓名σ在M 到这样的程度中的每个条件科尔岛(ω,γ)部队(在V)那个M[G]∩Aɢ=σ.因此,对于每个q∈ 科尔岛(ω,γ).
q ⊩ⱽ科尔鸟(ω,γ)τ ∈ σ iffq ⊩ⱽ科尔岛(ω,γ)τ ∈ Aɢ.
因此,自从{C壶(ω,γ),τ ,σ}⊆ M和M 绝对是可传递的,
{p ∈ P│p ⊩ⱽ科尔岛(ω,γ)τ ∈ Aɢ }={p ∈ P│p ⊩ⱽ科尔岛(ω,γ)τ ∈ σ}
={p ∈ P│p ⊩ᴹ科尔岛(ω,γ)τ ∈ σ}∈ M.
(四)⇒ (c):修正偏序集P 在M 和τ ∈ Mᴾ.We ma你假设τ 是一个简单的
P-一个真实的名字。让=γ=|P|ᴹ,让τ* 做简单的人P×C壶(ω,γ)-由字母定义的名称((,(p,q))∈ τ* 当且仅当( (),p)在τ.然后自从P×C壶(ω,γ)具有同构于的稠密集山口l(ω,γ),by
(d),{(p,q)∈ P×C壶(ω,γ)│(p.q)P×⊩ⱽ科尔岛(ω,γ)τ* ∈ Aɢ} ∈米(meter的缩写))因为对所有人来
(p,q)∈ P×C壶(ω,γ),(p,q)P×⊩ⱽ科尔岛(ω,γ)τ* ∈ Aɢ惟一可能是p⊩ⱽ ᴘ τ ∈ Aɢ.
(c)的结论如下。
(五)⇒(a)(类似地,对于(f)) ⇒ (b)):修理一个p偏移P ∈ M假设G ⊆ P是V-普通的。让
σ={(τ,p)│τ ∈ M 一个简单的P-一个真实的名字,p∈P和p ⊬ⱽ∈ Aɢ}.
通过(e),σ ∈ M.因此σ ∈ Mᴾ=Vᴾ∩M 和我G[σ] ∈ M[G].
索赔。我G[σ]=Aɢ∩M[G].
赞成索赔的:假设r ∈ 我ɢ[σ].让p∈G ⊆ P是这样的 那(r,p)∈ σ 和我ɢ[r]=r。因此r是一个简单的P-名字在M 对于一个真实的和pᴘ ⊩ⱽτ ∈ Aɢ.
因此r∈Aɢ∩M[G].
假设现在r ∈ Aɢ ∩M[G].让p ∈ G和τ∈Mᴾ 如此p⊩ⱽᴘ r ∈ Aɢ.让τ 是 一个简单的P-真实in的名称M 到这样的程度p⊩ⱽᴘ τ=r. □
然后(τ,p)∈σ 因此r ∈我ɢ[σ].
(四) ⇒ (f):固定γ ∈ M ∩On.让P=C壶(ω,γ)和P'=科尔岛(ω,2 |γ|).让
〈τα│α<2 |γ|〉∈ M列举所有简单的P-名字在M 为真的。让π:P×P' → P'做一个保序双射。定义一个简单的
P×P'-名字σ 如下所示:
σ={((我,j),(p,q))│∃α<2 |γ| 到这样的程度q(0)=(我以及)στ ,j) (,p)∈τα}
让σ”做简单的人P'-名字{ ˇ ((我,j),π(p,q)≬†我(,j),(p,q))∈ σ}.
通过(d),X={q∈P'│q⊩ⱽᴘ' σ* ∈ Aɢ}∈M.
因此,
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。