Z={(p,q)∈P×P'│π(p,q)∈X}={(p,q)∈P×P'│π(p.ᴘq)d ⊦*ⱽ∈ Aɢ}
={(p,q)∈P×P'│(p,q)P×P'⊩ⱽ σ ∈ A ɢ×ʜ}∈米 (meter的缩写))
10琼·巴加利亚、纽斯·卡斯特尔斯和PAUL·拉森
让
Y={(τ,p)│∃α<2 |γ| 到这样的程度τ=τα以及(p.(0,α))∈Ζ}.
因为Z∈M.Υ∈M.F或者τ ∈ Mᴾ,让τ be相应的P×P'-名字它只取决于第一个坐标。特别是,对于每一个α<2 |γ|,
因为τα ∈ Mᴾ,对于所有(p,q)∈ P×P'-.
p⊩ⱽᴘ(我,j)∈ τα iff(p,q)P×P' ⊩ⱽ(我,j)∈ τα.
索赔。F或者每个α<2 |γ|,对于所有人p∈P,(p.(0,α))P×P' ⊩ⱽσ=τα.
赞成索赔的:让G=G₁×G₂)⊆ P×P' 是V-通用,以便(p.(0,α))∈ G.我们c见鬼我ɢ[σ]=我ɢ[τα]:如果(我,j)∈我ɢ[σ],那么对于一些(r,s)∈G
((我,j).(r,s))∈ σ,s(0)=β对一些人来说β<2 |γ| 和pr(我⊩ⱽ, j)∈ τᵦ。因为(r,s),(p,(0,α))∈ G.α=β 以及(我,j)∈ 我ɢ[τα].
如果(我,j)∈ 我ɢ[τα],让(r,s) ≤ (p.(0,α))在G 是这样(r,s)⊩ⱽσ P×P'
(我,j)∈ τα .然后r ⊩ⱽᴘ (我,j)∈ τα. 此外,由于s ≤ (0,α),s(0)=α.因此,( (我,j),(r,(0,α)))∈ σ以及(r,(0,α))P×P' ⊩ⱽ (我,j)∈ σ。因为
(r,(0,α)) ≥ (r,s),(r,(0,α))∈ G以及(我,j)∈ 我ɢ[σ]. □
此外,giv(构成动词)表示“使处于···状态”p ∈ P,以及τ 一个简单的P-名字在M.
(r,p)∈ Y iff∃α<2 |γ| 到这样的程度τ=τα 以及(p,(0,α)P×Pʳ ⊩ⱽσ ∈ Aɢ×ʜ
iff∃α<2 |γ| 到这样的程度τ=τα 和 p ⊩ⱽᴘ τα ∈ Aɢ
iffp ⊩ⱽᴘ τ ∈ Aɢ.
因此,
Y={(τ,p)│τ ∈ M 一个简单的P-一个真实的名字,p ∈ P和pᴘ⊩ⱽτ ∈ Aɢ}.
(f) ⇒ (五):固定P∈M.让γ=|P|ᴹ 和Pγ=科尔岛(ω,γ).让X=
{(r,p)│τ ∈ M一个简单的Pγ-一个真实的名字,p∈Pγ 和pγ ⊩ⱽτ ∈ Aɢ}.
由f).X∈M.在···里AM,让e是···的完全嵌入P 到···里面科尔岛(ω,γ).
和以前一样,e 自然延伸到嵌入e*:Mᴾ → Mᶜ壶(ω,γ) 在M.
让
Y={(τ,p)│τ ∈ M 一个简单的P-一个真实的名字,p∈P和⋕ ⊩ⱽτ ∈ Aɢ}.
所以,
Y={(τ,p)│τ ∈ M 一个简单的P-一个真实的名字,p∈P 以及(e*(τ),e(p))∈X}.
因此,Y∈M. □
F或者M 可数的概念A-关闭有一个更简单的公式,因为如下文命题2.11所示。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。