数学联邦政治世界观
超小超大

逻辑论文 (10-6)

  那A=p[T]和p[T]=ωω\p[S]在任何强制扩展中

  

ω逻辑初级读本7

  基数的偏序小于κ.我们sa那些树

  让我们见证这一点A是κ-uB。

  二)A ⊆ 稀有是普遍拜尔如果是的话κ-uB代表每个基数κ.

  提议2.2。(2).为A ⊆ 稀有,以下是等效的:

  我)A是普遍拜尔。

  二)F或者每辆紧凑型Hausdorff sp杰出的/一流的X每一个c(连续函数

  f:X → 稀有,集f⁻¹(A)={х ∈ X│f(х) ∈ A}有道具一月

  拜尔,即there存在开集O ⊆ X使得对称的

  differencef⁻¹(A)△O是微薄的。

  三)F或者每一个强迫的概念P存在tr英国电气公司(English Electric Compαny)T 和S 在ω×2│F

  到这样的程度A=p [T]=ωω\ p[S]和Vᴾ ⊨ p[T]=wω\ p[S].我们说

  那是树吗他们见证了这一点A uB代表什么P.

  下面是众所周知的w呃-

  给定树的根基对于ZFC的所有模型都是绝对的普通人。

  提议2.3。让T 和S 是trees开启。ω×κ,对于一些序数κ.

  假如p[T]∩p[S]=∅.那么,在任何强制延伸中V[G]我们也吃吧p[T]V[G]∩p[S]V[G]=∅.

  赞成的:T一个矛盾,假设P是一个强迫性的观念,p ∈ P

  τ 是一个P-真实的名字,和p ⊩ τ ∈p[T]∩p[S].

  让普通 ≺ H(λ),λ 一个足够大的普通红衣主教,普 通可数之类的

  那p,P,τ,T,S∈ 普通,让M 是···的过渡崩溃普 通,让p, P,τ,T

和 S是···的传递性崩溃p,P,τ,T 和S,分别为.因此,在M 我们有e

  p ⊩ p τ ∈p[T]∩p[S].

  让g是ˉ P-通用结束M随着T∈ g.所以,在M[g],我们有

  τ [g]∈p[T]∩p[S].

  请注意p[T∩普通]⊆ p[T]和p[S∩普通]⊆ p[S].此外,ˉ T ≅ T∩普 通和

  S ≅ S∩普通.因此,既然传递性崩溃是自然上的同一性数字,p[ˉ T]⊆ p [T]和p[ˉ S]⊆ p[S],与事实相矛盾p[T]和

p[S]是不相交的。 □

  

  推论2.4。让t,T' 和S 是trees开启ω×κ.对于一些序数κ.

  假如p[T]=p[T'] 和p[S]=ωω\ p[T].如果在V[G],p[S]ⱽ[G]=ωω\p[T]ⱽ[G],

那么p[T']ⱽ[G]⊆ p[T]ⱽ[G].

  备注2.5。一般来说,在与推论相同的假设下

  2.4,我们不能断定p[T']ⱽ[G]=p[T]ⱽ[G],例如,人们可以轻松构建树S和T在ω×ω到这样的程度p[S]是实数的集合坐v型车在的偶数元素上经常取值为0ω,以及p[T]是取v的一组实数经常在偶数元素上赋值0ω,以及到这样的程度S和T 将投影到具有这些定义的集合中(从而投影到补充)在所有强制扩展中。此外,如果{хα:α<2ω}是

  一组实数(在地面模型中),在

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

穿书成恶毒女配怎么办 连载中
穿书成恶毒女配怎么办
美颜盛世
【已经签约】穿进修仙文里的恶毒女配变成了万人迷。不过女主(他是男的)是怎么回事?你不缠着男主,目光灼灼的看着我干什么?男主们呐?你们不为女主......
23.9万字8个月前
这是越更越上头的狗血双女主剧情! 连载中
这是越更越上头的狗血双女主剧情!
皮总i
爱情不分性别,每个人都有爱的权利!男男女女生生世世轮回纠缠……
4.9万字8个月前
我自己瞎写的文 连载中
我自己瞎写的文
一个没有名字的银儿
就是很多自己瞎写的片段啦。也叫啥都写的杂文。理性观看,有雷点,谢谢
14.0万字8个月前
妖王的冰山小王妃 连载中
妖王的冰山小王妃
玉米爱浪花
简介:公元14500年,地球上人、妖、魔和天族和睦相处,只是人族不知道还有其他三族的存在。一次意外,封印多年的黑暗之王再次现世,天、妖和魔族......
19.6万字8个月前
宠溺百篇之梦风月 连载中
宠溺百篇之梦风月
槐何
这一切还得从许愿说起,从此有了四朵根本躲不掉的小桃花……
4.9万字8个月前
星拟:幸福小镇? 连载中
星拟:幸福小镇?
桶中加尿泼谁谁发疯
『停更中…』全员男体……严禁剧透……无脑小说
0.4万字8个月前