是的,连续体不是实值可测的,投影确定性(PD)是假的,适当的强迫公理是假的,并且存在非Borei同构的非Borel分析集。
连续体假说仍然没有定论,即使假设存在一个服从综合猜想的宇宙。一个人需要更强的幂集最大性的版本比内部模型假设要解决CH,即具有全局绝对参数的公式的假设。A由此产生的强内部模型假说(SIMH)的一致性证明然而仍然缺乏。
综合科学和大综合?另一个标准来源首选宇宙是全知的原理宇宙是全知全能的。如果它能够描述在其他宇宙中什么是真的。一个精确的基于这一原则的标准如下。
无所不知的标准。设O是任意句子的集合来自v的参数可以保持在v的一些外部模型中。那么是v中可定义的一阶。
这种说法最早出现在Mack Stanley未发表的作品中,他在作品中展示了无所不知的宇宙(用我们的术语来说),假设一个可测量基数的一致性稍低(粗略地说,许多拉姆齐基数都是平稳的)。人们可能会想作为权力集最大化形式的泛科学;然而,这不太可能而功率集最大化不允许任何参数omniscience允许任意设置参数。
用泛科学综合有序最大性应该不难,在存在的情况下对Dodd-Jensen核心模型使用不可分辨性拉姆齐基数。一个有趣的悬而未决的问题是如何实现更宏伟功率集最大化的合成。显而易见的方法,主张权力全知和有序极大宇宙的集极大性,看起来是不一致的然而,可以合理地推测综合是可能的,但它的公式将是微妙的,数学验证一致性可能具有挑战性。
§4.结论。本文介绍的超宇宙程序是一个确立理论真理的新途径,旨在拓展真理的范畴ZFC之外的语句。为此,该程序开发了一个合理的策略,并将该策略的内在合理性视为所获得结果的真实性的保证。更确切地说,有人介绍超宇宙是多元宇宙概念最合适的实现并将其用于比较的不同图片集合论宇宙(ZFC的可数传递模型)。共享的一阶属性被所有优选的宇宙认为在V中是真的。通过调用标准在有序(垂直)最大值和幂集(水平)最大值中,a获得了程序的适当实现。通过假设超宇宙中满足自然合成的元素的存在这些标准(即综合猜想)中,我们得出了以下结论:
这在V中是真的,但独立于ZFC。这些说法自相矛盾非常大基数的存在,但与它们在中的存在一致内部模型,它们与投影确定性相矛盾,但是一致的具有可序数定义的实数集的判定性参数。这导致了对大基数和集合论中的确定性。
值得注意的是,尽管本文提出的超宇宙程序的实现未能解决许多有趣的问题ZFC独立的问题,并提出了需要进一步研究的问题(从综合猜想的一致性开始),这是通过决不会破坏的整体有效性和数学成果程序。恰恰相反,所获得的研究结果和受超宇宙计划启发的发展所带来的问题证明了它的数学潜力,并谈到了它对未来,作为进一步的原则(如无所不知)激励标准对优选的宇宙进行分析和发现,并寻求综合对于他们来说,结合最大化。
§5.附录:超宇宙程序,极大性,大基数和PD。本附录致力于更深入地研究超宇宙计划与扩展的替代方案的关系集合论真值(超越ZFC和其他事实上的真集合论陈述),特别是大基数和投射行列式(PD)集合论公理的候选者。
Gödel的新公理程序,在第1节中概述,包括考虑所有集合的系统的一些最大性质的建议以扩展ZFC。由于在超宇宙程序中使用最大性作为优选宇宙的标准的激励原则,我们在上面主张,这个项目符合哥德尔的建议。属于。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。