然而,无穷范畴的扩展也揭示出,像数学这样的古老领域一旦试图吸收某个重大的新思想,尤其是当这种思想会挑战其最重要概念的意义时,它将不得不经历成长的痛苦。爱丁堡大学的克拉克·巴维克(Clark Barwick)说:“数学界的保守力量很强。如果不能给出令人信服的理由,就不要指望任何一群数学家会毫不迟疑地迅速接受任何新工具。”
尽管许多数学家已经接受了无穷范畴,但是很少有人完整阅读过卢里高度抽象的长篇专著。因此,一些基于他的思想的工作并不像数学中通常那样严谨。
康奈尔大学数学家茵娜·扎哈里维奇(Inna Zakharevich)说:“我听到人说,‘在卢里的书里讲过。’我说,‘真的吗?你引用的是8000页的文献。这不是引用,这是抱大腿。’”
数学家们仍然在努力理解卢里的思想的重要性和介绍它们的独特方式。他们还在提炼和重新包装他对无穷范畴的表现方式,以便让更多的数学家能理解它们。在某种意义上,他们正在从事任何革命之后必须进行的治理工作,将变革性文本转化为日常法律。通过这样做,他们将数学的未来建立在等价的基础上,而不再是在相等的基础上。
1
等价关系的无穷之塔
数学中的相等似乎是最没争议的概念。两粒珠子加一粒珠子等于三粒珠子。这有什么好讨论的?但最简单的想法也可能是最具欺骗性的。
自19世纪后期以来,数学的基础一直建立在集合上。集合论规定了构造和操作集合的规则或公理。例如,其中有一个公理说的是,你可以将一个包含两个元素的集合添加到一个包含一个元素的集合中,从而产生一个包含三个元素的新集合:2+1=3。
证明两个量相等的形式化做法是将它们配对:将等号右边的一粒珠子与左边的一粒珠子配对。当所有的配对完成后,没有剩余的珠子。
集合论能让人认识到,各有三个元素的两个集合正好能两两配对,但是并不容易察觉到各种不同的配对方式。你可以将右边的第一颗珠子与左边的第一颗珠子配对,或者将右边的第一颗珠子与左边的第二颗珠子配对,以此类推(总共有六种可能的配对方式)。说二加一等于三就忽略了它们相等的所有不同方式。坎贝尔说,“问题是,配对的方式有很多,当我们说相等的时候,我们已经忘了它们。”
─────────────
相等和等价
相等的概念意味着两个对象是完全一样的。
等价考虑了两个对象相互关联的各种不同方式。下面的图表示了两个珠子的集合可以相互配对的6种可能方式。
这就是等价出现的地方。相等是一种严格的关系——要么两者相等要么两者不等——而等价则有不同的形式。
当你可以将一个集合中的每个元素与另一个集合中的某个元素完全匹配时,这是一种强等价形式。但比如说,在一个叫做同伦论(homotopy theory)的数学领域,两个形状(或几何空间),如果你在不切割或撕裂它的前提下,可以将一个拉伸或压缩成另一个,则两者是等价的。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。