22琼·巴加利亚、纽斯·卡斯特尔斯和PAUL·拉森
comeager。但是自从M 是A-完整,对所有人M-通用g ⊆ P 到这样的程度 P ∈ g,我g[τ]∈ A.特别是,我ɢ[τ]∈ A. □
强烈的A-结束并不意味着.A-完整性,但是。看到这个,请注意,如果х 是一个真实的A={х},然后每个中医。M 强烈地-A-关门了。但是如果х Cohen-generic 结束了吗M,那么M 不是A-完整,因为如果P 是科恩强迫,和τ ∈ Mᴾ 是的名称х,然后设置D={p ∈ P:p ⊩ τ ≠ х} 是密集的子集P(虽然D ∉ M!).所以,有一套更好的P-通用滤波器结束M吮吸对于每个人G 在布景,我ɢ[τ] ≠ х.即,我ɢ[τ]∉ A.但是对一些人来说M-通用G,我ɢ[τ]=х ∈ A.
类似地 A-完整性并不意味着强大A-结束(确实如此萨尔瓦多不暗示A──关闭,或者)。作为一个例子,让M 满足ZFC+”0⋕ 做不存在,“让A=0⋕ (即,{n│n ∈ 0⋕ }).然后M 显然不是A-关闭,
因为M[G]∩A=A 尽管M-通用G ⊆ P,所有P.但是M 是A-完成了。到看到这个了吗,菲克斯P.p,以及τ,和supp那是为了很多人M-通用G,如果p∈G,那么我ɢ[τ]∈ A.由此可见X={n:∃p' ≤ p(p' ⊩ τ =n )}包含在A,这反过来又意味着我ɢ[τ]∈ A 尽管M-通用过滤器G ⊆ P 那个容器p.
3.这Ω-猜想
定义3.1。
我)一句话φ,是ωᴛ-令人满意如果T ⊭Ω ¬φ,即存在着α和B到这样的程度α ⊭ᴮ T+φ.
二)一组句子T 是ω-令人满意如果有CBA的话。B 和一个序数α 为了什么Vᴮ α ⊨T.
三)一句话φ 是ωᴛ-一致如果T ⊬Ω¬φ,即针对所有uB集A ⊆ 稀 有 满足定义2.29的1)和2),存在一个可数的过渡的A-闭集M 到这样的程度M ⊨ ZF角,并且存在着 α ∈ M ∩在到这样的程度Mα ⊨T+φ.
四)一组句子T 是ω-一致如果T⊬Ω ⊥,在哪里 ⊥ 是一个y con-传统,即,如果为所有A ⊆ 稀 有 uB满足定义的1)和2)2.29,存在一个中医 A-关闭M ⊨ ZFC和α ∈ M 到这样的程度Mα ⊨ T.
五)T是ω-不一致如果它不是ω一致的t.
观察如果广告⁺ 坚持住L(稀有) 和每一组实数L(稀有) 是uB,那么每ωᴛ-丙相容的句子符合T.
F第3.2幕。以下是等效的测试一组句子T:
我)T是ω-一致.
二)T ⊬Ω φ 对一些人来说φ.
三)T ⊬Ω ¬φ 尽管φ ∈ T,即面向所有人φ ∈ T,φ 是ωᴛ一致。
赞成的:我)⇒ 二)T里维亚尔。
二) ⇒ 罗马数字3)不失一般性,我们可以假设对于一些uB集合A、1)和2)的定义2.29成立。给定这样一个A,由h假设在那里存在一个A-封闭式中医 M 和α ∈ M ∩ On到这样的程度Mα ⊨ T+¬φ 。因为 Mα ⊨ ψ 尽管ψ ∈ T,一样的M 和α见证这一切T ⊬Ω ¬ψ ,对于所有人ψ ∈ T.
罗马数字3 ⇒ 我)W.l.o.g.,我们可以假设定义2.29的1)和2)对某些情况成立
ω逻辑初级读本23
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。