数学联邦政治世界观
超小超大

逻辑论文 (6-2)

  

  22琼·巴加利亚、纽斯·卡斯特尔斯和PAUL·拉森

  comeager。但是自从M 是A-完整,对所有人M-通用g ⊆ P 到这样的程度 P ∈ g,我g[τ]∈ A.特别是,我ɢ[τ]∈ A. □  

  强烈的A-结束并不意味着.A-完整性,但是。看到这个,请注意,如果х 是一个真实的A={х},然后每个中医。M 强烈地-A-关门了。但是如果х Cohen-generic 结束了吗M,那么M 不是A-完整,因为如果P 是科恩强迫,和τ ∈ Mᴾ 是的名称х,然后设置D={p ∈ P:p ⊩ τ ≠ х} 是密集的子集P(虽然D ∉ M!).所以,有一套更好的P-通用滤波器结束M吮吸对于每个人G 在布景,我ɢ[τ] ≠ х.即,我ɢ[τ]∉ A.但是对一些人来说M-通用G,我ɢ[τ]=х ∈ A.

  类似地 A-完整性并不意味着强大A-结束(确实如此萨尔瓦多不暗示A──关闭,或者)。作为一个例子,让M 满足ZFC+”0⋕ 做不存在,“让A=0⋕ (即,{n│n ∈ 0⋕ }).然后M 显然不是A-关闭,

因为M[G]∩A=A 尽管M-通用G ⊆ P,所有P.但是M 是A-完成了。到看到这个了吗,菲克斯P.p,以及τ,和supp那是为了很多人M-通用G,如果p∈G,那么我ɢ[τ]∈ A.由此可见X={n:∃p' ≤ p(p' ⊩ τ =n )}包含在A,这反过来又意味着我ɢ[τ]∈ A 尽管M-通用过滤器G ⊆ P 那个容器p.

  3.这Ω-猜想

  定义3.1。

  我)一句话φ,是ωᴛ-令人满意如果T ⊭Ω ¬φ,即存在着α和B到这样的程度α ⊭ᴮ T+φ.

  二)一组句子T 是ω-令人满意如果有CBA的话。B 和一个序数α 为了什么Vᴮ α ⊨T.

  三)一句话φ 是ωᴛ-一致如果T ⊬Ω¬φ,即针对所有uB集A ⊆ 稀 有 满足定义2.29的1)和2),存在一个可数的过渡的A-闭集M 到这样的程度M ⊨ ZF角,并且存在着 α ∈ M ∩在到这样的程度Mα ⊨T+φ.

  四)一组句子T 是ω-一致如果T⊬Ω ⊥,在哪里 ⊥ 是一个y con-传统,即,如果为所有A ⊆ 稀 有 uB满足定义的1)和2)2.29,存在一个中医 A-关闭M ⊨ ZFC和α ∈ M 到这样的程度Mα ⊨ T.

  五)T是ω-不一致如果它不是ω一致的t.

  观察如果广告⁺ 坚持住L(稀有) 和每一组实数L(稀有) 是uB,那么每ωᴛ-丙相容的句子符合T.

  F第3.2幕。以下是等效的测试一组句子T:

  我)T是ω-一致.

  二)T ⊬Ω φ 对一些人来说φ.

  三)T ⊬Ω ¬φ 尽管φ ∈ T,即面向所有人φ ∈ T,φ 是ωᴛ一致。

  赞成的:我)⇒ 二)T里维亚尔。

  二) ⇒ 罗马数字3)不失一般性,我们可以假设对于一些uB集合A、1)和2)的定义2.29成立。给定这样一个A,由h假设在那里存在一个A-封闭式中医 M 和α ∈ M ∩ On到这样的程度Mα ⊨ T+¬φ 。因为 Mα ⊨ ψ 尽管ψ ∈ T,一样的M 和α见证这一切T ⊬Ω ¬ψ ,对于所有人ψ ∈ T.

  罗马数字3 ⇒ 我)W.l.o.g.,我们可以假设定义2.29的1)和2)对某些情况成立

  

  ω逻辑初级读本23

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

我在恐怖无限流中加冕 连载中
我在恐怖无限流中加冕
莱利喵_9761905707972209
林淡一朝进入无限流世界,本以为自己很快就会被咔嚓掉。没想到那些鬼怪一见到自己就害怕的逃走。于是她一路斩妖除魔,成为了鬼界巨擘。副本一:诡异渔......
0.4万字1年前
斗:彼岸重生 连载中
斗:彼岸重生
栀儿鸢兮
彼岸之花,尹桐儿的复仇之路
0.2万字1年前
悟空小侠(六空cp) 连载中
悟空小侠(六空cp)
CT小柒
Cp只有六空其他都是友情向
0.0万字1年前
时空破碎之际 连载中
时空破碎之际
cui皮鸡
一次高考的失利,竟让整个世界改变,透视术、空间转移、复制术、读心术……路雨叶不曾想到,这个世界竟是如此玄幻!她更想不到的是,她居然在阴差阳错......
34.3万字1年前
双生姐妹之并蒂莲女神 连载中
双生姐妹之并蒂莲女神
瑾陈安琪
混沌之初,生有两朵并蒂莲,分为红莲和白莲,并蒂之莲,莲开并蒂,并蒂而生,相生相依,同生同灭。​后来并蒂莲化身为两位少女,一红一白,以姐妹相称......
0.5万字1年前
恐怖小说mny 连载中
恐怖小说mny
杀完人用二氧水消毒
恐怖小短文
5.7万字1年前