一;一个ω-型号关于ZFC是· · ·的模型ZFC谁的 自然数的集合与实际的自然数是同构的 数字。换句话说,一个ω-模型是没有 非标准自然数,尽管它可能
有非标准序数。(更一般地,对于任何序数α,安α-模型有 至少有根据的部分α 。)的每个传递模型ZFC是一个ω-模型,但后一个概念是严格的 更弱。
一致性层次结构
的存在ω-的型号ZFC并且暗示Con(ZFC)当然,还有Con(ZFC+Con(ZFC))和 迭代一致性层次结构的很大一部分。这简直是 因为如果M╞ ZFC并且具有标准的自然数,然后M同意Con(ZFC)持有,因为它有相同的 就像我们在环境背景下做的那样。因此,我们认为M满足ZFC+Con(ZFC)因此我们相信
Con(ZFC+Con(ZFC))。它再次得出结论M同意这一点 一致性断言,所以我们现在相信
Con³(ZFC)。模型M因此同意,所以我们 认为
Con⁴(ZFC)以此类推,只要 我们能够以这样的方式描述顺序迭代M正确地解释它们。
的每个有限片段ZFC允许许多传递 模型,作为反射定理.
传递模型和强制
集合论的可数传递模型在历史上被用作 形式化的便捷方式强制(force的现在分词形式)。这样的模型M使强迫理论变得方便,因为一个人可以 很容易证明对于每一个偏序Ρ在M,有一;一个M-通用过滤器 G ⊂ Ρ,只需枚举的密集子集Ρ在M以可数的顺序〈 Dₙ│n<ω 〉,并构建一个降序序列р₀ ≥ р₁ ≥ р₂ ≥ · · ·,与рₙ ∈ Dₙ 。该过滤器G由序列生成的是M -普通的。
出于一致性证明的目的,这种形式化的方式 效果很好。
展示Con(ZFC) → Con(ZFC+φ),修复
一个有限的片段ZFC并且与适当的可数传递模型一起工作 大碎片,产生φ中包含所需的片段 迫使它延伸。
传递模型宇宙公理
这传递模型宇宙公理断言每个集合都是 的传递模型的元素ZFC。这个公理使一个 比更强的声明费夫曼 理论,因为它被断言为单个一阶索赔,但弱于宇宙公理,声称宇宙有这样的形式Vκ为 难以接近的红衣主教κ.
传递模型宇审公理有时在 非的背景理论ZFC,而是的ZFC山口,省略了幂集公理,以及断言 每个集合都是可数的。这样的企业相当于采用 后一种理论,不是作为数学的基本公理,而是 作为背景元理论来研究多元宇宙透视,调查各种实际的集合论 宇宙,完整的传递模型ZFC,涉及一个另一个。
每个型号的ZFC包含的模型ZFC作为一个
元素
每个型号M关于ZFC有一个元素N,它认为 集合论语言中的一阶结构 的模型ZFC从外部看M。这一点在 的情况下M是一个ω-型号关于ZFC,因为在这种情况下M同意ZFC是 一致,因此可以建立一个亨金模型ZFC。在 · · · 里 剩下的一个案例,M有非标准的自然数。由反射定理应用于M,我们知道Σₙ的片段ZFC在模型中是正确的VᵦᴹM,对于每一个标准的自然 数字n。因为M无法确定其标准切割,因此 肯定有一些不标准n为了什么M有些人认为Vᵦᴹ满足(非标准)Σₙ的片段ZFC。因为n是非标准的,这包括完整的标准 的理论ZFC,根据需要。
前一段提到的事实有时会被一些刚开始的集合论者发现令人惊讶,也许是因为这个结论天真地似乎与可以有模型的事实相矛盾。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。