数学联邦政治世界观
超小超大

特殊篇章(传递模型宇宙公理) (5-1)

泽尔麦的公理...

cantors-阁楼

    

康托尔-阿提卡 

  

爬进康托尔的阁楼,在那里你会发现大大小小的无限​。我们的目标是提供一个关于所有数学无穷概念的综合信息资源。

 

在GitHub上查看项目纽吉尔德/康托尔斯-阿提卡​

  

快速导航

  

上层阁楼

  

中间的阁楼

  

下层阁楼

  

客厅

  

游戏室 

  

图书馆

  

比赛的末名

  

来源

  

康托尔的阁楼(原址)

  

乔尔·大卫·哈姆金斯关于阁楼的博文

  

回程机器上的最新工作快照

  

策梅洛-弗伦克尔​集合论​的公理

  

公理

  

外延性

  

空集

  

配对

  

联盟

  

基础(或规律性)

  

分离图式

  

无穷

  

Powerset

  

选择

  

替换模式

  

替换的应用

  

历史

  

ZFC的一致性

  

传递模型

  

的最小传递模型

  

ZFC

  

  

-模型

  

ZFC

  

一致性层次结构

  

传递模型和强制

  

传递模型宇宙公理

  

每个型号的

  

ZFC包含的模型ZFC作为一个元素

  

不可数传递模型  

具有选择公理​的策梅洛-弗兰克尔集合论​(ZFC)是集合论者使用的标准公理集合。形式语言用来表示每个公理是一阶同等式​的(=)在一起 用一个二元关系符号​,∈,意在表示集合 会员资格。空集公理​和分离模式是 被后来更具包容性的公理所取代。  

公理  

广泛性

集合由其元素唯一确定。  

这是表达 形式上作为

∀х∀g(∀z(z∈х↔z∈g)→х=g).

  

的”→“可以替换为”↔“,但是←方向是逻辑的一个定理。可选地,公理 外延可以作为一个平等的定义,一个不同的 axiom可以用在它的位置:∀х∀g(∀α(α∈х↔α∈g)→∀b(х∈b↔g∈b))  

意味着具有相同元素的集合属于相同的集合。   

    

空集

存在一些集合。事实上,有一个集合不包含成员。这是正式表达的

∃х∀g(g∉х).

这样一个х是唯一的,这个集合用∅.

配对

对于任意两组х和g(不一定截然不同)有一个进一步设置z其成员正是集合x和g.

∀x∀g∃z∀ω (ω∈ z ↔ (ω=xVω=g)).

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

荒野大陆(花仙) 连载中
荒野大陆(花仙)
枳悠屿
星落和星染一对闺蜜在一个虚拟世界的故事,结交了非常多的朋友,她们还会发生什么呢,请敬请期待(^-^){本人自创,未经允许,禁止抄袭}
2.3万字1年前
快穿之男配你别搞事情 连载中
快穿之男配你别搞事情
朵齐齐
大家都知道,每本小说都有一个深情男配爱而不得,孤独终老。染七七作为一个快穿任务者,当然男配爱不爱什么的和她没有一毛钱关系,她的任务就是保护男......
17.6万字1年前
猫七夜专辑 连载中
猫七夜专辑
星之灭亡
0.3万字1年前
捡了只猫做萌宠 连载中
捡了只猫做萌宠
宝珑
慕娇娇走了她留下了一封信就走了…墨景深双眼猩红这辈子…你都别想离开我(已签约)
13.1万字1年前
梦岁华兮 连载中
梦岁华兮
执素悦清
又名女魔头的真实身份!眼前的人是她吗?不是?不!是!我叫洛淮,本是天生的强者!却被眼前的这个女子虐待了整整五年!她是魔头的女儿!她的父亲?灭......
10.4万字1年前
重生之鬼女 连载中
重生之鬼女
黎少-雨桃
爱而不得,布下惊天大局,一个不甚,最终满盘皆输,为他人做嫁衣,成为他人爱情的考验。这世上最美的爱,无非两情相悦,早知结果,何不早点放手?陶思......
3.4万字1年前