数学联邦政治世界观
超小超大

补丁版第(5)章格罗滕迪克 (7-4)

的负号,则 Tr(u|h(X)) 就变成了 X 的 Betti 数的和而不是交错和,这样 Mₙᵤₘ (k) 就成为一个 Tannaka 范畴 (若 k 特征为零则其为中性,但其他情形不然).因此,当 k 是有限域的代数扩张时,Mₙᵤₘ (k) 是非中性的 Tannaka 范畴(但是,由于猜想 D 尚未被证实,所以我们不知道标准的上同调是否可通过其进行分解).

7重温 Weil 猜想

Zeta 函数

设 X 是 𝔽ᴘ 上的非奇异射影簇,固定𝔽ᴘ的一个代数闭包 𝔽 .对每个 m,𝔽 有唯一的 pᵐ 元子域𝔽ₚᵐ. 记 X (𝔽ₚᵐ) 为 X 上坐标在𝔽ₚᵐ中的点的集合,此为有限集合,X 的 Zeta 函数 Z(X,t)定义为

tᵐ

log Z(X,t)=Σₘ≥₁ |X (𝔽ₚᵐ) |──.

   m

______ 

¹⁴更确切地说,一个仿射群是域上的一个仿射群概型(未必是有限型的).每个这样的群都是那些能够实现为某 GLₙ 的子群的仿射代数群概型的逆极限. ― 原注

9 

例如,设 X=ℙ⁰= 单点 .则对任意的 m 有 |X(𝔽ₚᵐ)|=1,故

tᵐ 1

log Z(X,t)=Σₘ≥₁ ― =log ─── ;

m 1― t

因此

   1

   Z(X,t)= ── .

   1― t

作为第二个例子,设X=ℙ¹.则 | X(𝔽ₚᵐ)|=1+pᵐ,故

tᵐ 1

log Z(X,t)=Σ (1+pᵐ) ─ =log ───; m (1―t)(1―pt)

因此

1

  Z(X,t)=────

(1― t)(1― pt)

  

Weil 的奠基性的工作

40年代,Weil证明对于 𝔽ₚ 上亏格 g 的曲线 X,有:

p₁ (t)

 Z(X,1)=──── p₁(t) ∈ ℤ [t],(5a)

   (1―t)(1― pt)’

p₁(t)=(1― α₁t)· · ·(1― α₂g t)其中|αᵢ|

1

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

次元杂集……欲望使徒 连载中
次元杂集……欲望使徒
无妄之花
来自易次元作品«欲望使徒»同人衍生。信息素:瑞伦/瑞希★苹果安纳希斯★葡萄酒阿索历士★白兰地卡勒★咖啡傅里森★清茶感兴趣可以去易次元搜索«欲......
3.9万字4个月前
被设定好的游戏规则 连载中
被设定好的游戏规则
爱潇潇鸭
【该书原创禁抄袭】【隐藏cp多,就看你看的看不出来了】科技不断发展,全息游戏也在不断的向人们开放。在这个世界里,一切都是被设定好的,没有人知......
20.6万字4个月前
猴子警长探案记之卧底任务 连载中
猴子警长探案记之卧底任务
该用户已注销
兔子警长和花豹的卧底任务困难重重,新的危机即将来临……(这本书纯属个人想象)
1.2万字4个月前
异能之路 连载中
异能之路
凝霜雨
她从小就遭受养父养母的的非人性的虐待,直到十岁那年发生了一件事让她逃脱了那个可怕的家庭,从此她的命运发生了巨大的改变……
3.1万字4个月前
贾迪双人CP 连载中
贾迪双人CP
幸福快乐每个人
贾斯汀发现自己对迪恩的小心思后,便开始了漫长的追妻之路,会发生什么事情呢?走进《贾迪双人CP》来看看吧。
0.3万字4个月前
我靠快穿逆袭打脸 连载中
我靠快穿逆袭打脸
是语兮呀
孟冉一个胖子,是人人讨厌的存在,一天绑定了一个系统后,她穿进许多快穿世界后,人也渐渐的往女神方面发展,团厌?不存在的!#万人迷的养成计划!
11.6万字4个月前