幂集(或水平)最大值准则:该准则适用于幂集的最大值,其中模型具有固定的序数,如果无参数句子在υ的某个外部模型中成立(即,在包含具有与ω相同序数的υ的某个宇宙中υ),然后,它在υ的某个内部模型中成立υ(即,在某些宇宙中 υ₀ 包含在υ中,与υ的序数相同)。
序数(或垂直)极大在集合论中有很长的历史。它也被称为高阶反射原理,已被证明暗示(并证明)存在“小”大基数(即,与V=L一致的大基数概念,如不可达数、弱紧集、ω-Erdos基数等…)。¹³幂集极大化,只是最近才被表述出来。事实上,它相当于IMH,后者正式地说,通过传递到的外部模型,内部一致性保持不变,即,的某些内部模型中包含的无参数句集不增加。评估幂集极大与事实上的集合论真理的兼容性不是一件小事。由于IMH否定了不可达基数和射影确定性(PD)的存在(见[7]),这些暗示迫使人们重新审视大基数和确定性在集合论实践中的作用。因此,我们看到,幂集极大可能与事实上的集合论真理是相容的。因为,如果一个人接受大基数在集合论中的作用是正确描述的,说它们在内部模型中的存在,而不是它们在V中的存在,这是一个事实上的宗派理论真理,¹⁴ PD的重要性被它的
无参数版本,则幂集极大与
集合理论的实践被恢复:IMH实际上既与非常大的基数的内部模型一致,又与无参数PD一致(实际上与没有实际参数的OD-确定性一致)。¹⁴我们将返回
______
¹³更强烈的反射形式导致更大的基数。这些是允许参数A成为更复杂对象的原则,例如超类(类的类)、超超类(超类的类)...正如Koellner所指出的(见[15]),以自然的方式进行这一操作会很快导致不一致,使用嵌入的概念来实现这一点可以恢复一致性,并通过Magidor的工作(见[17]或[13])。定理23.6)导致了与非常大的超紧凑基数的等价性。然而。不清楚如何证明嵌入反射原理是无偏的,甚至是序数极大的自然原理。Duc到所涉及嵌入的任意性质(A与其“反射版本”之间的关系由没有唯一性性质的嵌入给出)。
¹⁴在具体情况下,IMH与所有无参数可定义射影实集的正则性是一致的。允许任意实数参数会产生很大的差异,并将与IMH兼容的原理转换为与IMH不兼容的原理。
塔蒂亚娜·阿里科尼和赛-大卫·弗里德曼
90
附录中集合论中的大基数公理和PD的作用。
对于首选大学的合理标准,可以得出什么结论?到目前为止,我们已经提出了两个候选准则:序极大性和幂集极大性。理想的情况是将它们组合成一个统一的标准,即,一个超宇宙中至少有一个元素满足的标准。这并不是微不足道的,因为幂集最大值和序数最大值相互矛盾。因此,人们可以得出以下猜想:
综合猜想。设幂集maximumiry*(IMH*)是限制于序极大宇宙(即,如果一个句子成立于υ)的序极大外模型,则它成立于υ)的内模型,则幂集极大性*(IMH")与序极大性的结合是一致的。I.C.,存在同时满足这两个标准的宇宙。
综合猜想的证明就在眼前,因为它只需要现有的方法来证明IMH的一致性(sce[8]),同时仔细理解Jensen编码在存在小的、大的基数属性的情况下是如何进行的。通过超宇宙程序,综合猜想在产生新的(一阶)集论公理方面是有效的,包括独立问题的解。由于见证了综合猜想的宇宙(即序极大且满足1MH*的宇宙)是优选的宇宙,所有这类宇宙共有的一阶性质在V中是成立的,并且可以作为新的公理来采用。这类声明的例子如下(见[7])。[8].[1]):
1.存在小的、大的基数模型和具有任意米切尔阶的可测量的基数的内模型。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。