数学联邦政治世界观
超小超大

第六章特殊篇章数学公理解释额外内容 (13-10)

就像复宇宙公理对复宇宙的描绘,其中的集合论宇宙没有哪个是特别的,对任何集合论宇宙都存在着“更好的”宇宙能看到前者的局限性,复复宇宙公理表达的是每个复宇宙也都不是特别的,并且总存在“更发达的”复宇宙,在它们看来前者只是一个“玩具”复宇宙.

类似定理 5.2.5,在一个不太强的假设之下,我们同样可以证明复复宇宙公理也是一致的.

引理 5.2.10 令 N 是 ZFC + Con(ZFC) 的模型,则 N 中的复宇宙 M0 从外面看仍然是一个复宇宙,即 M1 = {(m1,E1) | N ╞ (m0,E0) ∈ M1} 是一个复宇宙.

证明(1)可数化公理.给定 (m1,E1) ∈ M1。由 N 中的可数化公理,存在 n0,F1,有

N ╞ (n0,F0) ∈ M0Λ┌(n0,F0) ╞ m0 是可数的¬.

由定义, (n1,F1) ∈ M1:由(5.2.1), (n1,F1) ╞ m0 是可数的,由注 5.2.2,我们说 m1 是 n1 中的一个可数集合.

类似地,我们也有 (2) 伪良基公理.

(3) 可实现公理,给定 (m1,E1) ∈ M1、α ∈ m1 以及公式 φ(v1,v2),由 N 中的可实现公理,存在 n0 ∈ N,使得

N ╞ n0 = {x ∈ m0 | (m0,E0) ╞ φ[x,α]}

Λ(n0,E0) ∈ M0

所以,我们有(n1,E1) ∈ M1:并且对任意 x ∈ m1 ⊆ N,

x ∈ n1 ⇔ N ╞ x ∈ n0

(5.2.2) ⇔ N ╞ ┌(m0,E0) ╞ φ[X,α]¬

⇔ (M1,E1) ╞ φ[x,α]

可得 n1 = {x ∈ m1 | (m1,E1) ╞ φ[x,α]} 是模型 m1 中参数可定义的类:又由(5.2.1), (m1,E1) ╞ ┌(n0,E0) ╞ ZFC¬,因此我们说 (m1,E1) 认为 (n1,E1) 是一个ZFC 模型.

(4)力迫扩张公理,给定模型 m1 ∈ M1,公式 φ 和参数 α ∈ m1,φ(x,α)在 m1 中

定义了一个偏序 P1。由 N 中的力迫扩张公理,存在 N 中的 n0,G0,使得

N ╞ n0 ∈ M0ΛG0 是 P0 上的m0 脱殊滤 Λn0 = m0[G0]

首先,我们有 n1 ∈ M1.

其次,我们希望 G1 = {x ∈ N | N ╞ x ∈ G0} 是 P1 的 m1 脱殊滤,容易证明, G1 是 P1 上的滤。现任给 D0 ∈ m1,使得 D1 = {x ∈ m1 | m1 ╞ x ∈ D0} 是 P1 的稠密子集。则 m1 ╞ D0 是 P0 上的稠密子集。因而 N ╞ ┌m0 ╞ D0 是 P0 上的稠密子集¬。由于 N 认为 G0 脱殊,故 N ╞ D1N = {x ∈ m1 | m0 ╞ x ∈ D0} ∩ G0 ≠ Ø,即存在 x ∈ N, N ╞ x ∈ G0 且 N ╞ ┌m0 ╞ x ∈ D0¬ (即 m1 ╞ x ∈ D0),因此 G1 ∩ D1 ≠ Ø.

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

念回卿城 连载中
念回卿城
念回cp
我来到了另一个世界,本以为,生活还是如此糟糕无趣孤独,让人没有一点生的希望,没想到遇见了你(祈回)你如黑夜中一盏路灯,照亮了我的世界,还遇见......
0.5万字5个月前
相见即是上上签 连载中
相见即是上上签
47_UN
男女主在那年双双死亡,轮回转世后再一次相遇,最后有情人终成眷属。事情真是如此吗。
1.4万字5个月前
男朋友在末世不当人 连载中
男朋友在末世不当人
艾乔
(正文完)白桃做了三个预知梦。梦里丧尸横行,动植物集体变异,天气突变恶劣,人类文明一夕之间彻底断绝。白桃只能抱住弱小的自己瑟瑟发抖。这时候,......
37.6万字5个月前
我在东汉末年修仙问道 连载中
我在东汉末年修仙问道
南殷酱.
穿越袁术之女,父亲呆傻,弟弟平庸,作为嫡长女,自当尽心竭力为父谋划,但是父亲能别到处惹事了吗?事件一:袁术:袁本初,今日我便让你知道什么是嫡......
1.9万字5个月前
兽世:不按套路出牌的我在兽世乐逍遥 连载中
兽世:不按套路出牌的我在兽世乐逍遥
white白钰
兽世穿越,无女主,双男主,不喜勿喷各种原因这本书大概是太监了,辜负了大家期望实在抱歉。
2.6万字5个月前
异星迷航2(假如他们没有牺牲) 连载中
异星迷航2(假如他们没有牺牲)
疯癫帅哥
很简单,作者的幻想。也就是让灵光星五小只复活不过这是幻想,只能想想了……
1.7万字5个月前