若 α 满足(Vα,Vα∩f[f′[S′]],∈)≺(Vκ,f[f′[S′]],∈),则称 α 为Nanachi
Vκ⊨∀α∃β(β=ℵα) 即可知 κ 为极限基数,但 κ 为正则基数则取决于不存在以 κ 为值域的共尾映射的定义域非 κ ,是一则相对于 κ 的 Π1 1 命题。
不可描述基数
基数K称为∏n
m-indescribable如果对于每个∏m命题(φ,并且设置A⊆∨κ与(Vκ+n,∈,A)╞φ存在一个α<κ与(V α+n,∈,A ∩Vα)╞φ。这里看一下具有m-1个量词交替的公式,最外层的量词是通用的。∏n
不可描述基数以类似的方式定义。这个想法是,即使具有额外的一元谓词符号(对于A)的优势,也无法通过具有m-1次量词交替的n+1 阶逻辑的任何公式将κ与较小的基数区分开来(从下面看)。这意味着它很大,因为这意味着必须有许多具有相似属性的较小基数。
如果基数κ是∏nm,则称它是完全不可描述的——对于所有正整数m和n都难以描述。
强可展开基数
形式上,基数κ是λ不可折叠的,当且仅当对于ZFC负幂集的每个基数κ的传递模型 M,使得κ在M中并且M包含其所有长度小于κ的序列,有一个将M的非平凡初等嵌入 j 到传递模型中,其中 j 的临界点为κ且j(κ)≥λ。
一个基数是可展开的当且仅当它对于所有序数λ都是λ可展开的。
基数κ是强λ不可折叠的,当且仅当对于ZFC负幂集的每个基数 κ 的传递模型 M使得κ在M中并且M包含其所有长度小于κ的序列,有一个非-将M的j简单基本嵌入到传递模
型“N”中,其中j的临界点为κ,j(κ)≥λ,并且V(λ)是N的子集。不失一般性,我们也可以要求N包含其所有长度为λ的序列。
可迭代基数
将基数κ定义为可迭代的,前提是κ的每个子集都包含在弱κ-模型M中,其中在κ上存在一个M-超滤器,允许通过任意长度的超幂进行有根据的迭代。Gitman给出了一个更好的概念,其中一个基数κ被定义为α-iterable 如果仅需要长度为α的超幂迭代才能有充分根据。
拉姆齐基数
让[ κ ]<ω表示κ的所有有限子集的集合。如果 对于每个函数, 基数 κ称为 Ramsey
f : [ κ ]<ω→{0,1}
存在基数为κ的集合A对于f是齐次的。也就是说,对于每个n,函数f在A的基数n的子集上是常数。如果A可以被选为κ的固定子集,则基数κ被称为不可言说的Ramsey。如果
对于每个函数, 基数κ实际上
被称为Ramsey
f : [ κ ]<ω→{0,1}
存在C,它是κ的一个闭无界子集,因此对于C中具有不可数共尾性的每个λ,都存在一个与 f 齐次的入的无界子集;稍微弱一点的是lamost Ramsey的概念,其中对于每个λ<κ,需要有序类型λ的f的同质集。
将基数κ定义为可迭代的,前提是κ的每个子集都包含在弱κ-模型M中,其中在κ上存在一个M-超滤器,允许通过任意长度的超幂进行有根据的迭代。Gitman给出了一个更好的概念,其中一个基数κ被定义为α-iterable 如果仅需要长度为α的超幂迭代才能有充分根据
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。