数学联邦政治世界观
超小超大

特殊篇章世界基数(第二方案) (15-3)

而这里,之所以 β 要归零只留一个变元是在于 α≤Ψα(0)<Ψα(β+1) ,因此不存在 Ψα(α)=α 。

进一步推广到任意序数元的情形,令 αϕβ 表示从右往左数位置为 β 的参数 α ,其余为零。如 Ψ(1ϕ3)=Ψ(1,0,0,0) ,而在 αϕ0 的情况则表示最右边的位置为 α

定义 Ψ(S,0ϕβ,T)=Ψ(S,T) ,其中 S 、T 表示任意长(可以为 0 长)的序数串,Ψ(αnϕβn,⋯,α2ϕβ2,α1ϕβ1,γϕ0)=min{δ|∀ξ<α1∀η<β1(Ψ(S,ξϕβ1,δϕη)=δ)∧∀ξ<γ(Ψ(S,α1ϕβ1,ξϕ0)<δ)} 其中S=αnϕβn,⋯,α2ϕβ2 ,也就是说你依旧只需要看 Ψ(α1ϕβ1,γϕ0) 这两段而已,但要注意的是,βn>⋯>β2>β1>0 ,因为同一位置不能即参数为 α 又参数为 β ,尽管它是描述 Ψ 在超限多参数的情况,但这里更多的是表示哪些位置有哪些参数。

以 Ψ(1ϕω,γϕ0) 为例,小于 1 的只有 0,0ϕω 就直接被去掉了,但对于所有小于 ω 的 η ,Ψ(1ϕω,γϕ0) 则会成为 Ψ(xϕη) 的不动点。并且对于所有小于 γ 的 ξ ,鉴于 γϕ0 其实就是表示最右边的数为 γ ,这其实就是表示第 γ 个 Ψ(xϕη) 的不动点,自然平凡的有

Ψ(1ϕω,ξϕ0)<Ψ(1ϕω,γϕ0) ,或者说 Ψ(1,…,0,ξ)<Ψ(1,…,0,γ)

再以 Ψ(2ϕω+ω) 为例,这里 γϕ0=0 ,但它并不是首个 Ψ(1ϕω+ω,x) 的不动点,而是对于所有小于 ω+ω 的 α ,都是 Ψ(1ϕω+ω,xϕα) 的不动点。对任意 κ ,Ψ(λϕκ)=λ 都是存在的,但对于 1<λ ,Ψ(λϕκ)=κ 是不存在的,毕竟 λ≤Ψ(1ϕλ)<Ψ(2ϕλ) ,而 Ψ(1ϕλ) 的情况会对于所有 α<λ ,成为 Ψ(xϕα) 的不动点。

而所有这样得到的世界基数,都仍是小于最小不可达基数的世界基数。特别的,令定义中的 Ψ(α)=gF(α) 更改为 Ψ(α)=W(α) ,W(α) 即第 1+α 个世界基数,则都小于之前的 Ψ(1,1) 具有的一个性质——

VΨ(1,1)⊨φ↔VΨ(1,0)⊨φ

假设 Ψ(1,1) 是第 α<λ 个世界基数,VΨ(1,1) 满足存在 <α 个世界基数,则有 VΨ(1,0) 满足存在 <α 个世界基数,而 Ψ(1,0) 本身亦是一个世界基数,与 Ψ(1,1) 是第 α 个世界基数的假设矛盾。

假设 Ψ(1,1) 是 W(2,0) ,即最小的满足 λ 是第 λ 个世界基数,则 VΨ(1,1) 满足世界基数在其中无界,同样有 VΨ(1,0) 满足世界基数在其中无界,与 Ψ(1,1) 是 W(2,0) 的假设矛盾。

若对两个世界基数 α,β 有 Vβ⊨φ↔Vα⊨φ 则称 α 为大世界基数,将 W(α) 改写为 1+α 个大世界基数,则 Ψ(1,2) 具有的一个性质—— VΨ(1,2)⊨φ↔VΨ(1,1)⊨φ 同样超越这些。但需要注意的是,即使是 Ψ(1,0) 都有 VΨ(1,0)⊨φ↔Vκ⊨φ 的初等子模型,因而远大于此。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

碧落之水与风 连载中
碧落之水与风
三舞_91012679355915371
0.2万字11个月前
新葫:爷爷的宠爱 连载中
新葫:爷爷的宠爱
萌愿
“修炼者与普通人”和“同系与杂系”这两种不同道路上的人,偏偏共同出现在世界不被众人所知的地区,早已经过淬炼消失快三千年的女子,她的出现单单只......
19.8万字11个月前
凤逆天下之狐初 连载中
凤逆天下之狐初
明舞&殇蝶
与凰北月的同胞妹妹凰北明因为与姐姐一起执行任务而穿越到了一个新大陆里某女主:等等,为什么我是一只狐狸?某位为妹妹操碎了心的姐姐:妹妹太强了,......
12.5万字11个月前
众金cp小杂文 连载中
众金cp小杂文
G爷不相信爱情
作者有:墨子渊/正作者、梦琴/副作者众金必写,如果是写其他cp的话,可写,不会写的cp可不写不看可走、可看留下
0.7万字11个月前
付招摇 连载中
付招摇
万俟优
发现自己身世的离招摇,为担负重任,四海为家,在多次爱恨情仇的纠纷下,与慕王的两位世子结下不解之缘……
7.5万字11个月前
快穿:大佬一号 连载中
快穿:大佬一号
苏飞鱼
1V1一号醒来的时候就在系统空间了,她对一切都持无所谓的态度,既然无聊,那就跟着系统派的任务走好了……没想到,这个系统,并没有看上去那么简单......
8.1万字11个月前