数学联邦政治世界观
超小超大

特殊玄宇宙第二版本篇章(数学模型) (10-3)

证明。假设有一个伍丁红衣主教,上面有一个不可访问的。对于每个实数R 令 M(R):为 Lα[R],其中 α 最小,因此 Lα[R] 是 # 生成的。伍丁上面不可访问的基数意味着有足够的投射确定性来启用

  

我们使用马丁引理来找到一个实数 R,使得 M(S):的理论是常数对于 S Turing-above R。我们声称 M(R):满足 SIMH(ω1):事实上,令:M 为# 生成的 ω1 保留 M(R):的外部模型,满足某个句子 phi(ω1)。

令 α 为 M(R):的序数高度(= M 的序数高度)。从结果来看,之前引用的 Jensen 的观点([6] 的定理 9.1),M 有一个 # 生成的 ω1 保留

对于一些实 S,且 R ≤ T S,外模型 W 的形式为 Lα[S]。当然 α 是最小的

因此 Lα[S] 是 # 生成的。所以 W 等于 M(S):并且 W 的 ω1 等于 ω1M#(R)。通过R的选择,M#(R)也有一个可定义的内模型,满足ψ(ω1).✷

  

然而,与 SIMH(ω1, ω2) 一样,SIMH(ω1,:ω2) 的一致性是开放的。

4.9 极大值协议

该协议旨在将高度和宽度最大值的研究组织为三个阶段。

第 1 阶段。最大化序数(高度最大值)。

第 2 阶段。最大化序数后,最大化基数。

第 3 阶段。最大化序数和基数后,最大化幂集(宽度最大)。

第 1 阶段由 # 代负责。所以我们现在关注第二阶段,即基数最大化。

根据第一阶段,我们现在假设 V 是 # 生成的,并且在讨论时,V 的外部模型我们只考虑那些也是 # 生成的模型。

我们想要一个标准,它表示对于每个基数 κ, κ+ 一样大

尽可能。首先,让我们考虑 κ = ω 的情况,因此我们想要最大化ω1。当然,基本问题如下。作为 -:的集合通用扩展生成的模型也是 # 生成的:

事实。V 有一个 # 生成的外部模型,其中 ω在1是可数的。

  

但我们肯定想要这样的东西: ωL[x]1

对于每个实数 x 都是可数的。

这样做的原因是 ωL[x]1,与 ω 不同在1,一般来说,在 V 和所有的之间是绝对的

它的外部模型。

定义 16. 令 p 为 V 中的一个参数,P 为 V 中的一组参数。然后如果存在参数来自 P 的公式 phi,则 p 相对于 P 是强绝对的

定义 V 中的 p 以及所有 # 生成的 V 保留基数的外部模型

直到并包括 中提到的参数的遗传基数

10.

  

通常我们会取 P 由某个无限基数 κ 的所有子集组成,在这种情况下,上述定义中的基数保留指的是基数最多并包括κ。

k最大(κ+)(对于 κ 来说是无限基数)。假设序数 α 是强的

相对于 κ 子集的绝对值。那么 α 的基数最多为 κ。

可以证明,如果 κ 是正则的,则在哪个CardMax(先生+) 成立。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

小甜:你存在的意义 连载中
小甜:你存在的意义
.寄予星辰.
中考暂退小心超人:甜心,因为你的存在,让我的存在变得有了意义甜心超人:我喜欢上一个对我特殊的男生
1.9万字1年前
金凌:只对你一人倾心 连载中
金凌:只对你一人倾心
秋叶凌玖
有三对主cp的喜欢一个人,就是一个人。只喜欢他/她一个,因为一世一双人她南宫婷依,世家小姐排行第三,南宫世家的三小姐,医者仁心,桀骜不灭。他......
3.0万字1年前
Hp弗丽嘉 连载中
Hp弗丽嘉
芙洛爱芙弗
非签约,非实名认证作者,随缘更新。目前属于大修ing.读前请看简介——HP同人作,一切属于罗琳(ooc属于我)。私设较多,历史向考究党勿入,......
5.2万字1年前
神兽金刚之她的灾难 连载中
神兽金刚之她的灾难
小念尊嘟
“好久不见林语涵”
0.4万字1年前
坠落黑暗的天使 连载中
坠落黑暗的天使
求求给我一发出金吧
诅咒下,光明染上黑暗迷茫中,信念指引方向血月夜,危难降临世界绝望间,神明给予希望希望散尽,天使堕落劫灭之时,天使加冕海誓山盟,无人记起“在黑......
9.6万字1年前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有五位男生,五位五主,共十人。
3.3万字1年前