ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:
Question
Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?
Theorem(Martin-Steel)
Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.
Theorem(Martin-Steel)
SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.
Beyondsuperstrong:theUniversalityTheorem
Thcorem(UniversaΓtyTheorcm)
SupposethatNisaweakextendermodelforδissupercompact.
supposethatFisanextendersuchthat:
⇨CRT(F)≥δandNisclosedunderF.
ThenF丨N∈N.
⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L
⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.
Conclution
TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel
⇨itmustyieldanultimateversionofL.
Gödel’stransitiveclassHOD
⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.
Deflnition
Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:
1.ΧisdefinableinVαfromordinalparameters.
2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.
⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.
OefinlenM(Gödel)
HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.
whatabutextendermodelsforsupercompactcardinals?
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。