数学联邦政治世界观
超小超大

第三篇章终极集合论宇宙(V=UltimateL) (9-4)

  ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:

  Question

  Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?

  Theorem(Martin-Steel)

  Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.

  Theorem(Martin-Steel)

  SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.

  Beyondsuperstrong:theUniversalityTheorem

  Thcorem(UniversaΓtyTheorcm)

  SupposethatNisaweakextendermodelforδissupercompact.

  supposethatFisanextendersuchthat:

  ⇨CRT(F)≥δandNisclosedunderF.

  ThenF丨N∈N.

  ⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L

  ⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.

  Conclution

  TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel

  ⇨itmustyieldanultimateversionofL.

  Gödel’stransitiveclassHOD

  ⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.

  Deflnition

  Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:

  1.ΧisdefinableinVαfromordinalparameters.

  2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.

  ⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.

  OefinlenM(Gödel)

  HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.

  whatabutextendermodelsforsupercompactcardinals?

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

养老鱼 连载中
养老鱼
CN_HJ
果泥含量众多
4.1万字11个月前
魔王之恋(DE) 连载中
魔王之恋(DE)
开心_53013309082882668
ED我磕死。
9.3万字11个月前
动物管理局之朱雀临世 连载中
动物管理局之朱雀临世
一只茶杯猫
如果郝运是从别的地方穿越而来的,并且是一只可以男女转换的朱雀,那故事会不会不一样?弃更!!!
6.3万字11个月前
宁睨女帝 连载中
宁睨女帝
甜蜜紅糖
  万始之初  有一女帝备受瞩目并集宠爱於一身  却无情无欲  父母皆为创世之神,女主初生时,父母就发现女主的不同,生活了上千年即将成年依旧......
27.2万字11个月前
记录生活日记 连载中
记录生活日记
是小小微
是一个人的生活日记,是记录日常生活发生的故事,是记忆过去的日记
9.2万字11个月前
神之侦探团第二部 连载中
神之侦探团第二部
凤雪玥
继第一部,续作。
8.9万字11个月前