3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.
⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.
⇨lfE∩L=0thenL[E]=L
⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].
⇨ThisisequivalenttotheAxiomofChoice.
Thebuildingblocksforinnermodels:Extenders
supposethat
j:V→M
isarelementaryembeddingwithcniticalpointκ,κ<η.andthat
Р(η)⊂M.
The(strong)extcnderEoflengthηdcrivedfromj
TheextenderEoflengthηdefinedfromjisthefunction:
E:Р(η)→Р(η)
whereE(A)=j(A)∩η.
TwoordinalsassociatedtotheextenderE:
⇨CRT(E)=min{α丨E(α)≠α}=κ.
⇨LTH(E)=ηwheredocn(E)=Р(η).
Largecardinalaxiomsintermsofextenders
δ isastrongcardinalif
⇨foreach γ>δ thereexistsanextenderEsuchthat
CRT(E)=δandLTH(E)≥ γ.
δisasupercompactcardinalif
⇨foreach γ>δ thereexistsanextenderEsuchthat
E(CRT(E))=δandLTH(E)≥γ.
δisanextendiblecardinalif
⇨foreachγ>δ thereexistsanextenderEsuchthat
CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).
weakextendermodelsandextendermodels
Foralargecardinalaxiom Φ:
Deflnition
AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat
E=F丨N
forsomeextenderF.
⇨lfΦholdsinVthenVisaweakextendermodelforΦ.
Deflnition
AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:
1.N=L[E].
2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.
ThelnnerModelprogram
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。