SupposeΧ≺Lα.Thenthereisauniqueordinalβand
isomorphism
π:Lᵦ≅Χ.
Theorem(Scott)
AssumeV=LSupposeMisatransitivesetandthat
Χ≺M
isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.
AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.
Χ≅Vα
andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.
⇨TheseaxiocnsimplyV≠L.
Stiongaxcmsofinfinity:largecardinalaxioms
BzrJmpJateforlargecardinalaxioms
Acardinalκisalargecardinalifthereexistsanelementaryembedding.
j:V→M
suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.
⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:
⇨simplestcaseiswhereκisameasurablecardinal.
⇨M=VcontradictstheAxiomofChoice.
ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.
⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.
Thehierarchyoflargecardinalaxioms-shortversion
⇨Thereisaproperclassofmeasurablecardinals.
⇨Thereisaproperclassofstrongcardinals.
⇨Thereisaproperclassofwoodincardinals.
⇨Thereisaproperclassofsuprstrongcardinals.
…………………
⇨Thereisaproperclassofsupercompactcardinals.
⇨Thereaproperclassofextendiblecardinals.
⇨Thereaproperclassofhugecardinals.
⇨Thereaproperclassofw-hugecardinals.
EnlargementsofL
Deflnition
SupposeEisaset(orclass).Then
1.L₀[E]=∅.
2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where
Z=Lα[E]∪{E∩Lα[E]}.
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。