数学联邦政治世界观
超小超大

第十章Frobenius矩阵是指以下矩阵 (3-1)

Frobenius矩阵是指以下矩阵:

0 0 · · · 0 –α₀

1 0 · · · 0 –α₁

0 1 · · · 0 –α₂

A=( ⁝ ⁝ ⁝ ⁝ ) ·

0 0 · · · 1 – αₙ₋₁

矩阵A拥有很多很好的特性,比如,A的特征多项式刚好为f(λ)=λⁿ+αₙ₋₁ λⁿ⁻¹+· · ·+α₁λ+α₀;而且A的最小多项式 m(λ) 正好就是其特征多项式,即 m(λ)=f(λ) 。

如果矩阵A是域F上的矩阵,从最小多项式可以看出,矩阵A可对角化当且仅当m(λ) 在域F中可分解成不同的一次因式的乘积,即存在 λ₁,λ₂,· · ·,λₙ ∈ F 使得 m(λ)=(λ – λ₁) (λ – λ₂) · · · (λ – λₙ) 。

如果F是数域K,且m(λ) 在K中不可约,那么把A看成是复数域 ℂ 上的矩阵时,A可对角化。这是因为最小多项式在复数域上总有标准分解,若它在K上不可约,则 m(λ) 在K上没有重根,而有没有重根不随域的改变而改变,所以它在复数域上也没有重根。从而 m(λ) 在复数域上可以分解成不同的一次因式的乘积,即矩阵A在复数域上可对角化。

现在,我们来研究与A可交换的矩阵组成的集合C(A)={B ∈ Mₙ(F)|AB=BA} 。题目出自丘维生《高等代数》第九章第7节课后习题。

定义F[A]={f(A)|f(x) ∈ F[x]} ,即域F上的多项式用矩阵A带入得到的集合。因为任意 g(x) ∈ F[x] ,有 g(x)=bₙxⁿ+· · ·+b₁x+b₀ ,其中 bᵢ ∈ F,i=1,· · ·,n ,所以: g(A)=bₙ Aⁿ+· · ·+b₁ A+b₀l 。从这个表达式可以看出, g(A) 总是和 A 可交换的,所以我们总有 F[A] ⊂ C(A) 。

另外,不论是F[A] 还是 C[A] ,它们都可以看成是域F上的线性空间,这很好验证。

其中一个维度很好计算,dim F[A] 。我们知道 m(λ) 作为A的最小多项式,有 m(A)=0 ,从而:Aⁿ+αₙ₋₁Aⁿ⁻¹+· · ·+α₁A+α₀l=0.

所以,

Aⁿ= –αₙ₋₁Aⁿ⁻¹ – · · · – α₁A – α₀l 。任取 h(A) ∈ F[A] ,对多项式 h(x) 和 m(x) 做带余除法:

h(x)=u(x)m(x)+r(x), deg r(x)<deg m(x).

将A带入到上面的等式,得到:

h(x)=u(x)m(x)+r(A)=r(A),

r(A)=qᵣ Aʳ+qᵣ₋₁ Aʳ⁻¹+· · ·+q₁ A+q₀,其中 r<n 。也就是说, F[A] 上的任何元素都可由 l,A,· · ·,Aⁿ⁻¹ 线性表出。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

漫逸的狂徒 连载中
漫逸的狂徒
屠星_Sl
你正在看的小说,包含**镜头,激烈言辞,**主题,闪烁画面,以及**高涨的恶魔们……是的,这些是为成熟读者提供的。请自行决定是否观看,如有不......
12.3万字4周前
司命他六根清净 连载中
司命他六根清净
染月映色
双男+甜+双洁(●'◡'●)九天之上,司命独掌众生之灵千百年来皆道六根清净当属司命——烬华此言闻名中古,某个闲神闻言日日往司命殿跑。…………......
0.1万字4周前
萌物美图选集 连载中
萌物美图选集
一只喜欢花的小羊
就是各种各样的美图,因为偶尔可能会找到好看的图,所以更新随缘
2.2万字4周前
天官(谢怜黑化篇) 连载中
天官(谢怜黑化篇)
梦露魁
谢怜重生黑化,新的故事线,再次重启
2.4万字4周前
魏氏小红娘 连载中
魏氏小红娘
小院多芭蕉
魏苻不小心掉下井盖,还和一个古里古怪的东西签订了契约,从此成为一名穿越古今中外的红娘。但是,魏苻逐渐在任务中抓狂,我说各位大人物们,你们能不......
29.4万字4周前
百花凋零,相思断肠 连载中
百花凋零,相思断肠
枕冷
“我信仰之笃定,何须神明作证?”前期尴尬的脚趾扣地,后期也不是啥好东西前期主角卑微,后期主角硬气(虽然后期主角没有什么戏份,但是还是占据比较......
12.5万字4周前