数学联邦政治世界观
超小超大

第九章康托空间上的测度 (2-1)

会在这里记录一些课本上说显然,但我觉得一点也不显然的小结论。

康托空间是指2ω={f|f:ω → 2} ,即所有可数0-1序列的集合。在其上可以定义拓扑,借助 2ω={σ丨∃n ∈ ω(σ:n → 2) },即所有有穷0-1序列的集合, |σ| 定义为有穷序列 σ 的长度。任给 σ ∈ 2<ω 定义它的柱集 [σ]:={X ∈ 2ω:X ≻ σ}, ,即所有扩张 σ 的无穷序列的集合。由 {[σ]:σ ∈ 2<ω} 作为基本开集生成 2ω 上的一个拓扑。

在这个拓扑(的σ -代数上)定义一个测度 μ 。定义是这样的,对基本开集 [σ] ,定义 μ([σ])=2⁻|σ|。再由开覆盖定义外测度,再利用卡氏条件定义测度(或者通过定义内测度得到测度,因为 μ(2ω)=μ([∅])=1)。 μ 实际上是一个概率测度。但我们需要验证下面这个命题。

证明如果{σᵢ}ᵢ∈ω ⊂ 2<ω 是前束无关的(即两两不相容,也可以叫做反链)

,那么 ∑ 2⁻|σᵢ| ≤ 1。

ᵢ₌₀

只需证明对任何有穷情况成立,即任给反链{σₖ}ᵐₖ₌₀ ⊂ 2≤ⁿ

,那么 ∑ 2⁻|σₖ| ≤ 1。

ₖ₌₀

为此,对 n 进行归纳。假设n时成立,来看n+1时的情况。这时 {σₖ}ᵐₖ₌₀ ⊂ 2≤ⁿ⁺¹ 为反链,将它写成 Dₙ ∪ Bₙ₊₁ ,其中 Dₙ ⊂ 2≤ⁿ,Bₙ₊₁ ⊂ 2ⁿ⁺¹,并假设 Dₙ={σₖᵢ}ˡᵢ₌₀ 。我们要来计算 Bₙ₊₁ 的基数。

因为对于任何σₖᵢ ∈ Dₙ ,在 2ⁿ⁺¹={f|f:n+1 → 2} 中有 2ⁿ⁺¹⁻|σₖᵢ| 多个元素扩张它。而 Dₙ 中的元素是两两不相容的,所以扩张他们的元素也是两两不同的,即 {τ ∈ 2ⁿ⁺¹:τ ≻ σₖᵢ} ∩ {τ ∈ 2ⁿ⁺¹:τ ≻ σₖⱼ}=∅,if i ≠ j. 所以在 2ⁿ⁺¹

ₗ ₗ

中共有 ∑ 2ⁿ⁺¹⁻|σₖᵢ|=2ⁿ⁺¹ ∑ 2⁻|σₖᵢ|

ᵢ₌₀ ᵢ₌₀

个序列扩张 Dₙ 中的某个元素。

从而 |Bₙ₊₁| ≤ 2ⁿ⁺¹ [1 – ∑ 2⁻|σₖᵢ|]

ᵢ₌₀

ₘ ₗ

于是可以估算出 ∑ 2⁻|σₖ|=∑ 2⁻|σₖᵢ|+|Bₙ₊₁| · 2⁻(ⁿ⁺¹) ₖ₌₀ ᵢ₌₀

ₗ ₗ

≤∑ 2⁻|σₖᵢ|+2ⁿ⁺¹ [1 – ∑ 2⁻|σₖᵢ|] · 2⁻(ⁿ⁺¹)=1.

ᵢ₌₀ ᵢ₌₀

归纳假设保证了 1 – ∑ 2⁻|σₖᵢ| ≥ 0 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

端阳女君撩众夫 连载中
端阳女君撩众夫
Kk神探书怪
五毒月,五恶日,天中节将至,爻端阳为仲夏女君,要在羽画台宴请百官共度端午节。我这里要讲的除了重五节的主要风俗有挂钟馗像、躲午、帖午叶符、悬挂......
0.4万字12个月前
斗:彼岸重生 连载中
斗:彼岸重生
栀儿鸢兮
彼岸之花,尹桐儿的复仇之路
0.2万字11个月前
雪落长歌 连载中
雪落长歌
云兮雪
阿雪的人生在她十七岁的那一天骤变。无边的水域上平静无波,而水面之下的,却是她亲族的葬身之所。身陷囹圄如何得以逃走,亲族之仇究竟向谁去报?那象......
83.8万字11个月前
对话体—由规则组成的世界 连载中
对话体—由规则组成的世界
任本木
你们都有见到过,听到过哪些毁三观的话。只有在遵守现有规则的前提下,打破规则,才能离开当下的束缚。ps,本文的封面、头像、文章均为本人所创,如......
29.1万字11个月前
唳鸣柒月 连载中
唳鸣柒月
半糖.half sugar
她是一个异世穿越的灵魂,从未知道过她所在身体内共存着两个灵魂,她轻笑所有人口中的废物,这冷漠的模样,看来刚一出场就自带女主光环?外加冷酷,机......
10.2万字11个月前
邪妻在上 连载中
邪妻在上
是西风辞吖
千秋雪本过着逍遥自在的生活,却因屠府之仇,不得不走上复仇之路。在这复仇之路里遇到朋友,以及愿共度余生之人,也收获了不少的实力,不少人缘关系…......
5.5万字11个月前