数学联邦政治世界观
超小超大

第九章康托空间上的测度 (2-1)

会在这里记录一些课本上说显然,但我觉得一点也不显然的小结论。

康托空间是指2ω={f|f:ω → 2} ,即所有可数0-1序列的集合。在其上可以定义拓扑,借助 2ω={σ丨∃n ∈ ω(σ:n → 2) },即所有有穷0-1序列的集合, |σ| 定义为有穷序列 σ 的长度。任给 σ ∈ 2<ω 定义它的柱集 [σ]:={X ∈ 2ω:X ≻ σ}, ,即所有扩张 σ 的无穷序列的集合。由 {[σ]:σ ∈ 2<ω} 作为基本开集生成 2ω 上的一个拓扑。

在这个拓扑(的σ -代数上)定义一个测度 μ 。定义是这样的,对基本开集 [σ] ,定义 μ([σ])=2⁻|σ|。再由开覆盖定义外测度,再利用卡氏条件定义测度(或者通过定义内测度得到测度,因为 μ(2ω)=μ([∅])=1)。 μ 实际上是一个概率测度。但我们需要验证下面这个命题。

证明如果{σᵢ}ᵢ∈ω ⊂ 2<ω 是前束无关的(即两两不相容,也可以叫做反链)

,那么 ∑ 2⁻|σᵢ| ≤ 1。

ᵢ₌₀

只需证明对任何有穷情况成立,即任给反链{σₖ}ᵐₖ₌₀ ⊂ 2≤ⁿ

,那么 ∑ 2⁻|σₖ| ≤ 1。

ₖ₌₀

为此,对 n 进行归纳。假设n时成立,来看n+1时的情况。这时 {σₖ}ᵐₖ₌₀ ⊂ 2≤ⁿ⁺¹ 为反链,将它写成 Dₙ ∪ Bₙ₊₁ ,其中 Dₙ ⊂ 2≤ⁿ,Bₙ₊₁ ⊂ 2ⁿ⁺¹,并假设 Dₙ={σₖᵢ}ˡᵢ₌₀ 。我们要来计算 Bₙ₊₁ 的基数。

因为对于任何σₖᵢ ∈ Dₙ ,在 2ⁿ⁺¹={f|f:n+1 → 2} 中有 2ⁿ⁺¹⁻|σₖᵢ| 多个元素扩张它。而 Dₙ 中的元素是两两不相容的,所以扩张他们的元素也是两两不同的,即 {τ ∈ 2ⁿ⁺¹:τ ≻ σₖᵢ} ∩ {τ ∈ 2ⁿ⁺¹:τ ≻ σₖⱼ}=∅,if i ≠ j. 所以在 2ⁿ⁺¹

ₗ ₗ

中共有 ∑ 2ⁿ⁺¹⁻|σₖᵢ|=2ⁿ⁺¹ ∑ 2⁻|σₖᵢ|

ᵢ₌₀ ᵢ₌₀

个序列扩张 Dₙ 中的某个元素。

从而 |Bₙ₊₁| ≤ 2ⁿ⁺¹ [1 – ∑ 2⁻|σₖᵢ|]

ᵢ₌₀

ₘ ₗ

于是可以估算出 ∑ 2⁻|σₖ|=∑ 2⁻|σₖᵢ|+|Bₙ₊₁| · 2⁻(ⁿ⁺¹) ₖ₌₀ ᵢ₌₀

ₗ ₗ

≤∑ 2⁻|σₖᵢ|+2ⁿ⁺¹ [1 – ∑ 2⁻|σₖᵢ|] · 2⁻(ⁿ⁺¹)=1.

ᵢ₌₀ ᵢ₌₀

归纳假设保证了 1 – ∑ 2⁻|σₖᵢ| ≥ 0 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

末日之我是主宰 连载中
末日之我是主宰
雪碧加可乐
我空间管理者,发现有人不顾规则打破空间从而来管理一下越世者,谁知被暗算,只能稍微的伪装一下下啦呵,规则,什么是规则,我,就是规则“可是守护原......
0.5万字1年前
我家大师兄一东方纤云回到现代(all大) 连载中
我家大师兄一东方纤云回到现代(all大)
咖啡味的草莓酱
0.3万字1年前
杀生丸之九月如风 连载中
杀生丸之九月如风
希九儿
继爱上杀生丸的女子
3.5万字1年前
变形金刚之重启 连载中
变形金刚之重启
墨沈云渊
不泄密
6.7万字1年前
如果历史是一群喵之神秘组织篇 连载中
如果历史是一群喵之神秘组织篇
瓜子家的小甜饼
一次爬山引发的整个故事
1.8万字1年前
兽人国度:找个猛兽当老公! 连载中
兽人国度:找个猛兽当老公!
零非凌
被蟒蛇绑架的林妖妖,此刻的心情是崩溃的“喂,这位蟒蛇大哥,我不好吃的啊!〞一朝跌落兽人世界,懵逼的林妖妖感觉自己出现了幻觉,蟒蛇的眼神有些无......
5.5万字1年前