数学联邦政治世界观
超小超大

第十章Frobenius矩阵是指以下矩阵 (3-2)

还需验证l,A,· · ·,Aⁿ⁻¹ 线性无关,假设 k₀l+k₁ A+· · ·+kₙ₋₁ Aⁿ⁻¹=0 ,令 υ(x)=kₙ₋₁ xⁿ⁻¹+· · ·+k₁x+k₀ ,则 υ(x) 是矩阵A的零化多项式,根据最小多项式的最小性,有 m(x)│υ(x),然而因为 deg υ(x) ≤ n – 1<n=deg m(x) ,所以 υ(x) 只能为0多项式,即 υ(x)=0 ,否则会出现 n=deg m(x) ≤ υ(x) ≤ n – 1这种矛盾的结论。

这样,就有k₀=k₁=· · ·=kₙ₋₁=0 。这表明 l,A,· · ·,Aⁿ⁻¹ 确实线性无关。

线性无关加上可表性,就可以断定l,A,· · ·,Aⁿ⁻¹ 是线性空间 F[A] 上的一个基。所以 dim F[A]=n 。

现在假设线性空间V上的线性变换A:V → V 使得矩阵A是线性变换 A 在V的一个基 α₁,· · ·,αₙ 下的矩阵。

那么,我们有:

(A(α₁)),· · ·,A(αₙ))=(α₁,· · ·,αₙ)A,

从矩阵A的特性可以看出,

A(α₁)=α₂,A²(α₁)=α₃,· · ·,Aⁿ⁻¹(α₁)=αₙ,

Aⁿ(α₁)=A(αₙ)= –α₀α₁ – · · · –αₙ₋₁ αₙ 。因为 α₁,α₂,· · ·,αₙ 是线性空间V的一组基,所以 α₁,A(α₁),· · ·,Aⁿ⁻¹(α₁) 是线性空间V的同一组基。

任何一个和A 可交换的矩阵 B ,在V中都有唯一的线性变换 B ,使矩阵 B 是线性变换 B 在基 α₁,· · ·,αₙ 下的矩阵,且线性变换 B 和线性变换 A 可交换。

而且,B(α₁)=b₀α₁+b₁ A(α₁)+· · ·+bₙ₋₁ Aⁿ⁻¹(α₁)。因为 B 与 A 可交换,所以,对于任意向量 α ∈ V ,设 α=q₁α₁+· · ·+qₙαₙ ,有B(α)=B(q₁α₁+· · ·+qₙαₙ)

=q₁ Bα₁+· · ·+qₙ Bαₙ

=q₁ Bα₁+q₂ B(Aα₁)+· · ·+qₙ B(Aⁿ⁻¹α₁)

=q₁ Bα₁+q₂ A(Bα₁)+· · ·+qₙ Aⁿ⁻¹(Bα₁)

ₙ₋₁ ₙ₋₁

=(∑ qᵢ Aⁱ ∑ bⱼAʲ) (α₁)

ᵢ₌₀ ⱼ₌₀

ₙ₋₁ ₙ₋₁

=(∑ bⱼAʲ ∑ qᵢAⁱ) (α₁)

ⱼ₌₀ ᵢ₌₀

ₙ₋₁ ₙ₋₁

=∑ bⱼAʲ (∑ qᵢAⁱ(α₁))

ⱼ₌₀ ᵢ₌₀

ₙ₋₁

=∑ bⱼAʲ(α).

ⱼ₌₀

ₙ₋₁

令g(A)=∑ bⱼAʲ ,上面的式子就表明

ⱼ₌₀

B=g(A)。这就表明C(A) ⊂ F[A] 。这也同时表明,C(A) ⊂ F[A] 。结合之前推导的 F[A] ⊂ C(A) ,就得到了 C(A)=F[A] 。而且 dim C(A)=dim F[A]=n 。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

南逢时 连载中
南逢时
赴明危
我真的认为我还活着
0.1万字8个月前
说谎后续(长篇) 连载中
说谎后续(长篇)
樊洛迪
重新开始是奖励还是惩罚?是真是假?你的谎言能否换来一次真谛?你的回答是?
1.1万字7个月前
秀图and吐糟大坑 连载中
秀图and吐糟大坑
兰木臻
标准更每日一更啦啦,图是按章节题目来的~想要什么图可以在评论发表啊~会做一丢丢封面,不嫌弃可以找我做哦~可撩可聊,么~一般都是发图的,偶尔会......
0.3万字7个月前
快穿!穿成反派白月光她又娇又软 连载中
快穿!穿成反派白月光她又娇又软
商榷a
[娇软美人+万人迷十偏执狂十病娇十甜宠十修罗场+1v1男主切片+结局He]纪酥酥,从小又娇又软,乖乖的,让人不禁心生怜悯,只是对感情的事情一......
2.8万字7个月前
快穿之养成宿主 连载中
快穿之养成宿主
玲珑红豆_950024382
云雪昭,雪神之子,生性如雪一样淡漠,也如雪一样干净、纯净。本是高高在上的天骄,却因世人的贪欲,众神的冷眼旁观,致此陨落,却不想,还有一线生机......
4.4万字7个月前
极沅零构 连载中
极沅零构
汁炒鸡排萝卜
科技发达尤利亚星上一场突如其来的变故,从此让这个世界变成了人间炼狱,一位普通的高中生被突如其来的灾难所笼罩,父母和无数的人相继残死在怪物手下......
9.9万字7个月前