数学联邦政治世界观
超小超大

第十章Frobenius矩阵是指以下矩阵 (3-1)

Frobenius矩阵是指以下矩阵:

0 0 · · · 0 –α₀

1 0 · · · 0 –α₁

0 1 · · · 0 –α₂

A=( ⁝ ⁝ ⁝ ⁝ ) ·

0 0 · · · 1 – αₙ₋₁

矩阵A拥有很多很好的特性,比如,A的特征多项式刚好为f(λ)=λⁿ+αₙ₋₁ λⁿ⁻¹+· · ·+α₁λ+α₀;而且A的最小多项式 m(λ) 正好就是其特征多项式,即 m(λ)=f(λ) 。

如果矩阵A是域F上的矩阵,从最小多项式可以看出,矩阵A可对角化当且仅当m(λ) 在域F中可分解成不同的一次因式的乘积,即存在 λ₁,λ₂,· · ·,λₙ ∈ F 使得 m(λ)=(λ – λ₁) (λ – λ₂) · · · (λ – λₙ) 。

如果F是数域K,且m(λ) 在K中不可约,那么把A看成是复数域 ℂ 上的矩阵时,A可对角化。这是因为最小多项式在复数域上总有标准分解,若它在K上不可约,则 m(λ) 在K上没有重根,而有没有重根不随域的改变而改变,所以它在复数域上也没有重根。从而 m(λ) 在复数域上可以分解成不同的一次因式的乘积,即矩阵A在复数域上可对角化。

现在,我们来研究与A可交换的矩阵组成的集合C(A)={B ∈ Mₙ(F)|AB=BA} 。题目出自丘维生《高等代数》第九章第7节课后习题。

定义F[A]={f(A)|f(x) ∈ F[x]} ,即域F上的多项式用矩阵A带入得到的集合。因为任意 g(x) ∈ F[x] ,有 g(x)=bₙxⁿ+· · ·+b₁x+b₀ ,其中 bᵢ ∈ F,i=1,· · ·,n ,所以: g(A)=bₙ Aⁿ+· · ·+b₁ A+b₀l 。从这个表达式可以看出, g(A) 总是和 A 可交换的,所以我们总有 F[A] ⊂ C(A) 。

另外,不论是F[A] 还是 C[A] ,它们都可以看成是域F上的线性空间,这很好验证。

其中一个维度很好计算,dim F[A] 。我们知道 m(λ) 作为A的最小多项式,有 m(A)=0 ,从而:Aⁿ+αₙ₋₁Aⁿ⁻¹+· · ·+α₁A+α₀l=0.

所以,

Aⁿ= –αₙ₋₁Aⁿ⁻¹ – · · · – α₁A – α₀l 。任取 h(A) ∈ F[A] ,对多项式 h(x) 和 m(x) 做带余除法:

h(x)=u(x)m(x)+r(x), deg r(x)<deg m(x).

将A带入到上面的等式,得到:

h(x)=u(x)m(x)+r(A)=r(A),

r(A)=qᵣ Aʳ+qᵣ₋₁ Aʳ⁻¹+· · ·+q₁ A+q₀,其中 r<n 。也就是说, F[A] 上的任何元素都可由 l,A,· · ·,Aⁿ⁻¹ 线性表出。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

端阳女君撩众夫 连载中
端阳女君撩众夫
Kk神探书怪
五毒月,五恶日,天中节将至,爻端阳为仲夏女君,要在羽画台宴请百官共度端午节。我这里要讲的除了重五节的主要风俗有挂钟馗像、躲午、帖午叶符、悬挂......
0.4万字6个月前
大师兄他患有感情障碍 连载中
大师兄他患有感情障碍
戥瓦
#本文已签约,禁止搬运或转载#【推隔壁《快穿之男配也想要光环》《论当我的病友成为了我的对象》】————不正经的简介滕皛十分幸运的死了,又十分......
17.9万字5个月前
夜镜 连载中
夜镜
凝心悠
“嘿!我告诉你啊,你有听说过关于凌晨夜镜的传闻吗?”“什么什么?”“据说在凌晨通过某个仪式,可以通过自己家里的镜子去到另一个世界…”————......
40.5万字5个月前
神兽金刚之他值得我爱吗 连载中
神兽金刚之他值得我爱吗
上官雅洁
想看后续,就看《神兽金刚之他值得我爱吗?》
6.2万字5个月前
长桥月,相见欢 连载中
长桥月,相见欢
许宋肖
【原创小说,辣鸡文笔,不喜勿喷】【四年心血,善始善终,不会烂尾】重生前,她是南瑜长公主,他甘愿沦为质子,只是想陪着她,她被自己的哥哥害死,他......
30.1万字5个月前
幻影忍者:余晖 连载中
幻影忍者:余晖
猫泫儿
双向奔赴/现代言情/校园/劳晴磕起来![男:第一次遇见她觉得她很可爱~][女:第一次和他说话很紧张][男:我喜欢上她了!][女:我开始暗恋他......
6.3万字5个月前