数学联邦政治世界观
超小超大

第十章Frobenius矩阵是指以下矩阵 (3-1)

Frobenius矩阵是指以下矩阵:

0 0 · · · 0 –α₀

1 0 · · · 0 –α₁

0 1 · · · 0 –α₂

A=( ⁝ ⁝ ⁝ ⁝ ) ·

0 0 · · · 1 – αₙ₋₁

矩阵A拥有很多很好的特性,比如,A的特征多项式刚好为f(λ)=λⁿ+αₙ₋₁ λⁿ⁻¹+· · ·+α₁λ+α₀;而且A的最小多项式 m(λ) 正好就是其特征多项式,即 m(λ)=f(λ) 。

如果矩阵A是域F上的矩阵,从最小多项式可以看出,矩阵A可对角化当且仅当m(λ) 在域F中可分解成不同的一次因式的乘积,即存在 λ₁,λ₂,· · ·,λₙ ∈ F 使得 m(λ)=(λ – λ₁) (λ – λ₂) · · · (λ – λₙ) 。

如果F是数域K,且m(λ) 在K中不可约,那么把A看成是复数域 ℂ 上的矩阵时,A可对角化。这是因为最小多项式在复数域上总有标准分解,若它在K上不可约,则 m(λ) 在K上没有重根,而有没有重根不随域的改变而改变,所以它在复数域上也没有重根。从而 m(λ) 在复数域上可以分解成不同的一次因式的乘积,即矩阵A在复数域上可对角化。

现在,我们来研究与A可交换的矩阵组成的集合C(A)={B ∈ Mₙ(F)|AB=BA} 。题目出自丘维生《高等代数》第九章第7节课后习题。

定义F[A]={f(A)|f(x) ∈ F[x]} ,即域F上的多项式用矩阵A带入得到的集合。因为任意 g(x) ∈ F[x] ,有 g(x)=bₙxⁿ+· · ·+b₁x+b₀ ,其中 bᵢ ∈ F,i=1,· · ·,n ,所以: g(A)=bₙ Aⁿ+· · ·+b₁ A+b₀l 。从这个表达式可以看出, g(A) 总是和 A 可交换的,所以我们总有 F[A] ⊂ C(A) 。

另外,不论是F[A] 还是 C[A] ,它们都可以看成是域F上的线性空间,这很好验证。

其中一个维度很好计算,dim F[A] 。我们知道 m(λ) 作为A的最小多项式,有 m(A)=0 ,从而:Aⁿ+αₙ₋₁Aⁿ⁻¹+· · ·+α₁A+α₀l=0.

所以,

Aⁿ= –αₙ₋₁Aⁿ⁻¹ – · · · – α₁A – α₀l 。任取 h(A) ∈ F[A] ,对多项式 h(x) 和 m(x) 做带余除法:

h(x)=u(x)m(x)+r(x), deg r(x)<deg m(x).

将A带入到上面的等式,得到:

h(x)=u(x)m(x)+r(A)=r(A),

r(A)=qᵣ Aʳ+qᵣ₋₁ Aʳ⁻¹+· · ·+q₁ A+q₀,其中 r<n 。也就是说, F[A] 上的任何元素都可由 l,A,· · ·,Aⁿ⁻¹ 线性表出。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

幻想王国物语I苏格星娜王国物语 连载中
幻想王国物语I苏格星娜王国物语
梦墨殿下
【中篇慢热文+群像+非遗+美食+日常+魔法等】苏格星娜王国境内,当恶魔再一次突破封印,出现于世间……理想是否终究会被残酷的现实所打败呢?看似......
38.7万字9个月前
团宠:有五个不熟悉的哥哥怎么办? 连载中
团宠:有五个不熟悉的哥哥怎么办?
悦雪风吟
作为一个身体不好的小孩子,爸妈为了让她养好身体,带她回到了山上的奶奶家,与奶奶父母一起生活,彼时大哥已经完全有能力接管公司,父母便安心照顾她......
1.2万字9个月前
悄悄倾诉 连载中
悄悄倾诉
190***412
小龙女在家乡受尽苦头,当她以为自己能逃离苦海时,现实却又给了她重重一击……
0.5万字9个月前
星座:最终救赎者 连载中
星座:最终救赎者
凤落临
「持续码字中……」血雨下,末日临。天地变,危难临。异能现,守护力。人性变,心中想。世界苍生,为我独立。世界的最终会是如何是毁灭还是新生?——......
3.2万字9个月前
幻境(作者:紫魅掠影) 连载中
幻境(作者:紫魅掠影)
紫魅掠影
脑洞提供者ID:72102281传说九重天上屹立着一座上古山峰,千年不倒,风吹日晒不损分毫。山上有一奇人,擅长幻境。凡入山者皆入幻,醒时皆是......
30.6万字9个月前
情月夜 连载中
情月夜
香汁桃桃
妖录:情月夜
11.3万字9个月前