数学联邦政治世界观
超小超大

第十章Frobenius矩阵是指以下矩阵 (3-1)

Frobenius矩阵是指以下矩阵:

0 0 · · · 0 –α₀

1 0 · · · 0 –α₁

0 1 · · · 0 –α₂

A=( ⁝ ⁝ ⁝ ⁝ ) ·

0 0 · · · 1 – αₙ₋₁

矩阵A拥有很多很好的特性,比如,A的特征多项式刚好为f(λ)=λⁿ+αₙ₋₁ λⁿ⁻¹+· · ·+α₁λ+α₀;而且A的最小多项式 m(λ) 正好就是其特征多项式,即 m(λ)=f(λ) 。

如果矩阵A是域F上的矩阵,从最小多项式可以看出,矩阵A可对角化当且仅当m(λ) 在域F中可分解成不同的一次因式的乘积,即存在 λ₁,λ₂,· · ·,λₙ ∈ F 使得 m(λ)=(λ – λ₁) (λ – λ₂) · · · (λ – λₙ) 。

如果F是数域K,且m(λ) 在K中不可约,那么把A看成是复数域 ℂ 上的矩阵时,A可对角化。这是因为最小多项式在复数域上总有标准分解,若它在K上不可约,则 m(λ) 在K上没有重根,而有没有重根不随域的改变而改变,所以它在复数域上也没有重根。从而 m(λ) 在复数域上可以分解成不同的一次因式的乘积,即矩阵A在复数域上可对角化。

现在,我们来研究与A可交换的矩阵组成的集合C(A)={B ∈ Mₙ(F)|AB=BA} 。题目出自丘维生《高等代数》第九章第7节课后习题。

定义F[A]={f(A)|f(x) ∈ F[x]} ,即域F上的多项式用矩阵A带入得到的集合。因为任意 g(x) ∈ F[x] ,有 g(x)=bₙxⁿ+· · ·+b₁x+b₀ ,其中 bᵢ ∈ F,i=1,· · ·,n ,所以: g(A)=bₙ Aⁿ+· · ·+b₁ A+b₀l 。从这个表达式可以看出, g(A) 总是和 A 可交换的,所以我们总有 F[A] ⊂ C(A) 。

另外,不论是F[A] 还是 C[A] ,它们都可以看成是域F上的线性空间,这很好验证。

其中一个维度很好计算,dim F[A] 。我们知道 m(λ) 作为A的最小多项式,有 m(A)=0 ,从而:Aⁿ+αₙ₋₁Aⁿ⁻¹+· · ·+α₁A+α₀l=0.

所以,

Aⁿ= –αₙ₋₁Aⁿ⁻¹ – · · · – α₁A – α₀l 。任取 h(A) ∈ F[A] ,对多项式 h(x) 和 m(x) 做带余除法:

h(x)=u(x)m(x)+r(x), deg r(x)<deg m(x).

将A带入到上面的等式,得到:

h(x)=u(x)m(x)+r(A)=r(A),

r(A)=qᵣ Aʳ+qᵣ₋₁ Aʳ⁻¹+· · ·+q₁ A+q₀,其中 r<n 。也就是说, F[A] 上的任何元素都可由 l,A,· · ·,Aⁿ⁻¹ 线性表出。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

所有书的番外 连载中
所有书的番外
莺啼月洛
本文包含作者写的所有书,此文因为是番外,所以不长更
2.7万字3个月前
魔王之恋2(DE) 连载中
魔王之恋2(DE)
开心_53013309082882668
有303和恐惧魔王儿子的戏哦∽
1.0万字3个月前
椒盐虾封面铺 连载中
椒盐虾封面铺
逐吱吱咕咕
看第一张无偿滴可以下单(又菜玩的又花油菜花型选手)收藏就好了√一直接☆有偿的话一直在接(联系方式在作者说)低层琢卮,欢迎美工老师跟我扩列!!......
0.3万字3个月前
差错之中之无乐 连载中
差错之中之无乐
我不想装了
自设人为两个,第二个后期出场
0.5万字3个月前
月渐半落殇华 连载中
月渐半落殇华
九幽海棠
新书《快穿之撩心不撩汉》求收藏!她是二十一世纪顶级的黑客杀手,写了一本小说结果引起了民愤,后被一个神秘的系统带入不知名的世界中,刚开始他以为......
7.4万字3个月前
都市之灵界大门别乱开 连载中
都市之灵界大门别乱开
子叶
[已签约](双男主❤️)嗯?废弃篮球场中间有个奇怪的门,打开之后竟然让我发现了这座城市的惊天大秘密!
9.8万字3个月前