数学联邦政治世界观
超小超大

第八章拓扑空间上的Choquet Game (2-2)

另一方面,假设l 有一个必胜策略 {fₙ} 。设 l 先手枚举的元素为 U₀ ,下面证明 U₀ (作为开子空间)不是Baire的。我们递归的定义一个集合 S ⊆ (P(X))<ω ,首先 ∅∈S ,若 (U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ∈ S,则 (U₀,V₀,· · ·,Vₙ₋₁,Uₙ) ∈ S ,其中 Uₙ=fₙ(U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ;另外,假设 (U₀,V₀,· · ·,Uₙ) ∈ S,这时,先定义对每个 Vₙ ⊆ Uₙ 非空开, Vₙ*:=Uₙ₊₁=fₙ₊₁(U₀,V₀,· · ·,Uₙ,Vₙ) 。令 ν 为所有具有如下形式的集合的类: A ⊆ P(Uₙ) ∧ ∀V ∈ A(V is nonempty open) ∧ A*:={Vₙ*:Vₙ ∈ A}is a pairwise disjoint set.

上面的集合包含关系是个偏序,且每个链都有上界,由Zorn's Lemma,存在 νₙ ∈ ν 为极大元。这时,我们将所有 (U₀,V₀,· · ·,Uₙ,Vₙ,Vₙ*) 放入 S ,其中 Vₙ ∈ νₙ 。注意到 uₙ={Vₙ*:Vₙ ∈ νₙ} 是两两不交的且 ∪uₙ 在 Uₙ 中是稠密的。

现在设Wₙ=∪{Uₙ:∃(U₀,V₀,· · ·,Uₙ) ∈ S} ,则 Wₙ 是开的,而且在 U₀ 中稠密(这可以通过归纳得到)。我们断言 ∩ₙWₙ=∅ ,如果存在某个 x ∈ ∩ₙWₙ ,则存在唯一的 (U₀,V₀,U₁,V₁,· · ·) ∈ [S] 使得 x ∈ ∩ₙUₙ (唯一性由 uₙ 两两不交得到),但这与 {fₙ} 为玩家 l 的必胜策略相矛盾。 ▢

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

小神明养夫路漫漫 连载中
小神明养夫路漫漫
丫禹
甜文,好看第一个世界:挣扎还是救赎?(情不知所起一往而深)第二个世界:我就这么被契约者卖了?(不真不实,差点玩儿完)第三个世界:不当人的我,......
10.9万字8个月前
修仙:雪似冰,一个音修她体弱 连载中
修仙:雪似冰,一个音修她体弱
上官辰亦儒
0.1万字8个月前
快穿,配角逆袭成女主 连载中
快穿,配角逆袭成女主
墨宁染
宁子芩穿越到小说里在知道所有剧情之下,是否能改变自己的命运?
19.7万字8个月前
语梦 连载中
语梦
亓曦晨
(建议根据目录选择性观看)杂乱的散章,有点絮叨,注意避雷,更新大概是一周三更吧,没空没灵感没想法就不更,加更什么的看心情。(可能会随机掉落)
12.4万字8个月前
犬夜叉之日暮沁雪 连载中
犬夜叉之日暮沁雪
星空似梦
一天,一位少女走在路上,看着《犬夜叉》突然两眼一黑,穿到了犬夜叉里面…“为什么他们都会喜欢我啊!”日暮沁雪仰望天空此时,某月老:“阿嚏,是不......
1.5万字8个月前
唐门之暗器大师 连载中
唐门之暗器大师
忆久易旧
天象剧变,大难将至,她说:“我自己闯下的祸,便由我一人承担罢了……”
2.2万字8个月前