另一方面,假设l 有一个必胜策略 {fₙ} 。设 l 先手枚举的元素为 U₀ ,下面证明 U₀ (作为开子空间)不是Baire的。我们递归的定义一个集合 S ⊆ (P(X))<ω ,首先 ∅∈S ,若 (U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ∈ S,则 (U₀,V₀,· · ·,Vₙ₋₁,Uₙ) ∈ S ,其中 Uₙ=fₙ(U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ;另外,假设 (U₀,V₀,· · ·,Uₙ) ∈ S,这时,先定义对每个 Vₙ ⊆ Uₙ 非空开, Vₙ*:=Uₙ₊₁=fₙ₊₁(U₀,V₀,· · ·,Uₙ,Vₙ) 。令 ν 为所有具有如下形式的集合的类: A ⊆ P(Uₙ) ∧ ∀V ∈ A(V is nonempty open) ∧ A*:={Vₙ*:Vₙ ∈ A}is a pairwise disjoint set.
上面的集合包含关系是个偏序,且每个链都有上界,由Zorn's Lemma,存在 νₙ ∈ ν 为极大元。这时,我们将所有 (U₀,V₀,· · ·,Uₙ,Vₙ,Vₙ*) 放入 S ,其中 Vₙ ∈ νₙ 。注意到 uₙ={Vₙ*:Vₙ ∈ νₙ} 是两两不交的且 ∪uₙ 在 Uₙ 中是稠密的。
现在设Wₙ=∪{Uₙ:∃(U₀,V₀,· · ·,Uₙ) ∈ S} ,则 Wₙ 是开的,而且在 U₀ 中稠密(这可以通过归纳得到)。我们断言 ∩ₙWₙ=∅ ,如果存在某个 x ∈ ∩ₙWₙ ,则存在唯一的 (U₀,V₀,U₁,V₁,· · ·) ∈ [S] 使得 x ∈ ∩ₙUₙ (唯一性由 uₙ 两两不交得到),但这与 {fₙ} 为玩家 l 的必胜策略相矛盾。 ▢
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。