数学联邦政治世界观
超小超大

第八章拓扑空间上的Choquet Game (2-1)

EDST后面势必要进入Game theory,这里熟悉一下game的基本套路。

定义1:给定一个拓扑空间X ,A ⊂ P(X) 为 X 的非空子集的族。定义 A 上的Choquet game C(A) 为一个两个人的游戏, l 和 ll ,其中 l 先手,枚举一个 A₀ ∈ A ,然后 ll 枚举一个 B₀ ⊆ A₀ ,继续 l 枚举一个 A₁ ⊆ B₀ ,……,这样交替下去直到无穷,满足 Aₙ ⊇ Bₙ ⊇ Aₙ₊₁,∀n 。现在我们说玩家 l l 赢得游戏当且仅当 ∩ₙ Aₙ=∩ₙ Bₙ ≠ ∅ 。我们称一局比赛是指两个玩家交替枚举之后得到的无穷序列 (A₀,B₀,A₁,B₁,· · ·) 。

l A₀ A₁ · · ·

l l B₀ B₁ · · ·

Choquet Game

也就是说,玩家l l 希望最终的交集非空,玩家 l 则希望为空。两个玩家的区别仅仅是谁先手谁后手。

定义2:玩家l 的一个策略是指一系列函数 {fₙ}ₙ∈ω ,使得 dom(fₙ)={(A₀,B₀,· · ·,Aₙ₋₁,Bₙ₋₁):(∀i<n – 1)Aᵢ ∈ A ∧ Aᵢ ⊇ Bᵢ ⊇ Aᵢ₊₁} 而且 A ∋ fₙ(A₀,B₀,· · ·,Aₙ₋₁,Bₙ₋₁) ⊆ Bₙ₋₁也就是说, fₙ 给出了玩家 l 在第n阶段依据前面所有信息应该枚举的元素。类似的可以定义玩家 l l 的策略。

定义3:称玩家l 有一个必胜策略,当且仅当存在 l 的策略 {fₙ} 使得只要玩家 l 严格按照这个策略玩,不论玩家 l l 出什么, l 总会赢得游戏。玩家 l l 有一个必胜策略的定义类似。

下面是一个有趣的定理。

定理(Oxtoby):任给一个拓扑空间X ,令 A 为 X 的所有非空开集的族。那么Choquet game C(A) 的玩家 l 没有必胜策略当且仅当 X 是Baire空间当且仅当 X 的任何可数个稠密开集的交是稠密的。

proof:假设 X 不是Baire空间,则存在一个非空开集 U₀ 和一列稠密开集 {Oₙ}ₙ∈ω 使得 ∩ₙOₙ∩U₀=∅。下面我们来构造 l 的一个必胜策略。 l 先手枚举 U₀ ,在第n>0阶段,我们已经有了 (U₀,V₀,· · ·,Uₙ₋₁,Vₙ₋₁) ,这时,因为 Oₙ₋₁ 是稠密开的,所以 Oₙ₋₁∩Vₙ₋₁ ≠ ∅ 为开集,这时 l 枚举 Uₙ=Oₙ₋₁∩Vₙ₋₁ 。根据这个策略,最终有 ∩ₙUₙ ⊆ (∩ₙOₙ) ∩ ∪₀=∅。所以根据这个策略玩家 l 必胜。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

学渣穿越各朝代历史 连载中
学渣穿越各朝代历史
嬴九盛
主要是一个啥都不会的学渣穿越历史~
0.8万字9个月前
异世惊梦 连载中
异世惊梦
白页茉
在遥远的异乡,一场惊梦即将上演,繁华的表象下暗流涌动。古老的街巷在月光下显得阴森恐怖,风中似乎夹杂着诡异的低语,每一次回眸,都仿佛一双看不见......
0.6万字9个月前
十二星座:万灵之晶 连载中
十二星座:万灵之晶
忆钰
简介:十二星座系列小说。双子座主角第一部【星辰大陆】连载中第二部【再次相遇】第三部【墨色羽翼】第四部【深渊域主】第五部【毁灭之初】第六部【万......
4.2万字9个月前
愿远离红尘飞遁离俗而不得 连载中
愿远离红尘飞遁离俗而不得
清夭扶苏
丕植明洛既然莫不关系就不要责问,既然毫不在乎又何须关注,既然你不爱我又何必在乎我是否还爱着你。误会总会在无意间诞生
28.6万字9个月前
师尊求你放过我的裤子 连载中
师尊求你放过我的裤子
月不叫七
无男主+搞笑】弟子1:“你听说了吗,今天师尊把掌门的裤子扯下来了。”弟子2:“听说了听说了,师尊还因为这件事情被掌门下令一年后收一个弟子呢。......
1.9万字9个月前
双男主:救赎篇 连载中
双男主:救赎篇
柚子代号000
“我对你爱,永远都在,至死不渝……”“聂聆,你是我的救赎,是唯一。”“能守护你是我十几辈子的幸运。”我想写的是简简单单平平淡淡从小到大一直都......
1.5万字9个月前