数学联邦政治世界观
超小超大

数学 (5-2)

对希腊人来说,数学代表着算数(Arithmetics)和几何学(Geometry)。前者是关于自然数的科学,后者研究的是日常空间中图形的形状和几何量的比例。尽管他们的几何学是一个公理化的体系,但他们认为这些公理是被“证据”所强加的。事实上,他们在推理中所隐含的假设比明确说明的公理更多。令人惊讶的是,他们从未引入实数的概念,尽管欧多克索斯[2]的比例论与20多个世纪后由戴得金[3]给出的实数定义没有本质上的区别。这种把以前已知的某一类对象——在这里则是一类有理数——作为一个新的对象的抽象过程,对他们的思想来说是完全陌生的。即使是开创了诸如静力学(Statics)和流体力学(Hydrodynamics)等新领域并为积分理论开辟道路的阿基米德,也不愿意抽象地定义实数。在他之后,创造的冲动似乎被耗尽了,而数学在整个中世纪都处于沉睡之中。

数学创造力的复兴还要归功于16世纪意大利数学家引入的新数字,包括负数和虚数,以及同一时期韦达[4]所引入的代数符号。希腊人也有一种基于几何的代数,但他们没有引入任何代数符号,导致他们的作品难以阅读。

笛卡尔和费马也为数学带来了新的推动力,他们创立的解析几何统一了代数和几何。尽管曲线切线的定义问题,以及如何寻找一条曲线的切线等问题已经在非常特殊的情况下得到解决(例如阿基米德的螺旋线),但现在我们可以用一种有效的方式对它们进行研究,这也直接导致牛顿和莱布尼茨发明微积分。莱布尼茨似乎已经猜到了许多未来数学的发展。他不仅明确地将函数作为对象引入数学,从而为泛函分析奠定基础;而且在他尚未实现的通用表意文字(universal characteristics)理论中[5],他梦想着揭示所有事物的代数结构,并构造一种普世的算法来进行表达和推理。因此,他不满足于笛卡尔的解析几何学,因为它依赖于坐标系的选取。或许是在困惑中,他预见到了几何学必定拥有一种内蕴的代数结构,而线性代数和格拉斯曼代数(编者注:参见《 格拉斯曼: 扩展的学问与线之代数丨贤说八道》)可以说部分地实现了他的这个梦想。不幸的是,他所处的时代并不能接受他过于超前的思想,他没有足够的追随者来发展他所设想的道路。不过他在微积分方面的工作被广泛地采用了,特别是他所创立的微分和积分的符号。而微积分也在很长一段时间内成为数学的一个主要的领域。

19世纪由罗巴切夫斯基和亚诺什[6]分别独立发现的非欧几里得几何学是另一进步。截止那时,古典时代为数学所设下的所有界限都被打破了:(欧几里得)几何学不再是由感知经验所强加给我们的,其所依赖的是人类基于公理的创造;我们可以设想不同的公理系统来研究不同的几何学。康德所强调的我们对于空间概念的“先验性(a priori)”由此变得过时了[7]。那么,几何学的本质到底是什么?在当时,人们将一个具有传递性群作用的空间作为几何的统一性概念,例如欧几里得空间的传递群作用事实上就是欧几里得平移变换。因此,几何学成为一个群作用的不变量和共变体的理论。但实际上,这个定义只适用于齐性空间中的几何学,而其他类型的几何已被发现,人们感到有必要对几何和空间的概念进行另外的概括。这最终导致了拓扑空间的定义,它是回答所有关于连续性、极限和近似问题的恰当语境,也使得分析和几何领域中许多共同的结构得以显现。

在同一时期,康托尔[8]的集合理论出现了,并愈发成为所有数学分支统一的基础理论。这是数学中一种新的抽象方式。如康托尔所说,从那时开始“数学的发展就是完全自由的了”,集合论中的概念“只要求不矛盾,并与之前引入的概念通过精确的定义相联系即可”。尽管不久之后,人们发现了一些危及康托尔集合理论的悖论,从而危及整个数学大厦,但康托尔的杰作开启了现代数学思维之路。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

南珩 连载中
南珩
洛._974523976
南珩六子的奇幻冒险故事纯属梦境伪造
3.9万字9个月前
噩梦奇幻传说 连载中
噩梦奇幻传说
洛星熠不是迷惑人
拥有者一个甚至多个的精灵异能者来到人类世界发生的竞争对抗,到底是谁笑到最后?
2.6万字8个月前
蓝冰…… 连载中
蓝冰……
神奇的胡萝卜
0.3万字8个月前
海棠无香之明镜高悬 连载中
海棠无香之明镜高悬
Bandy
月色撩人不及昀离昀离之逝不若星陨明镜高悬繁星涅槃
6.5万字8个月前
萌三国之亮瑜和我 连载中
萌三国之亮瑜和我
关注我好吗
2.1万字8个月前
九天青鸾 连载中
九天青鸾
刘幸运
九重天风雅温润的九殿下,与不周山颠元宫的青尊尊上,兜兜转转万年,绕不开的情缘纠葛,躲不掉的心之所向。
11.8万字8个月前