数学联邦政治世界观
超小超大

代数

在《概率论》中,我们引入σ代数的一个初衷是为了更严谨的表述随机事件。我们先回顾一下σ代数的概念,假设 Ω 为一个样本空间,由样本空间 Ω 的某些子集构成的集合 F 如果满足:

1. Ω∈F;

2. 如果 A∈F,那么 Aᶜ∈F;

3. 对可列并封闭;

则称F 是 Ω 上的一个σ代数;称 F 中的元素为随机事件。

应用中,我们更多时候会把σ代数解释为某种“信息”,即在已知某个σ代数(“信息”)后,我们可以判断某个随机事件是否发生。比如: F₁:={Ω,ф,A,Aᶜ} , 那么在已知 F₁ 情况下,我们能够判断随机事件 A 是否发生。假设 F₀:={Ω,ф} ,在已知 F₀ 的情形下,我们无法判断事件 A 是否发生。从这个意义上看, F₁ 比 F₀ 包含更多的信息。因此,σ代数包含的元素越多,其所蕴含的信息就越丰富。

所谓的某个随机变量X 所生成的 σ代数,记作 σ(X),就是在已知 σ(X) 的情形下,可以判断关于 X 的随机事件是否发生。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿:靠生子系统攻略绝嗣男主 连载中
快穿:靠生子系统攻略绝嗣男主
林悸柠
新书9个月前
绝世临,浩东情 连载中
绝世临,浩东情
字言不合
0.9万字8个月前
一个人族少女的事务局日常 连载中
一个人族少女的事务局日常
南棠Xinxin
前期讲述一位人族少女和她的朋友们在特殊组织空行事务局的工作和生活日常
12.8万字8个月前
养老鱼 连载中
养老鱼
CN_HJ
果泥含量众多
4.1万字8个月前
天降红颜:家有萌妖圆滚滚 连载中
天降红颜:家有萌妖圆滚滚
画颜妆
阴山,是仙帝居住的一座山,也是修仙者所向往的一个圣地。矗立在这山峰最高处的墨居阁,无疑就是强者之中的佼佼者。只不过在这之中,却也有那么一个特......
65.1万字8个月前
小舞是叶翘(叶浪浪) 连载中
小舞是叶翘(叶浪浪)
叶清浪
小舞是红叶也是叶翘主叶翘长明宗!无cp!
0.1万字8个月前