后者是数学柏拉图主义在集合论被广泛接受为数学基础这一语境下的具体实现,即认为存在唯一典范的集合概念以及由满足这一概念的所有集合组成的集合论宇宙,集合论语言中的任何一则命题关于这个集合论宇宙的描述要么是真的要么是假的。
集合论多宇宙观则基于人们从构造内模型、力迫扩张及非标准模型以及在这些模型中“工作”的强健经验,宣称存在许多不同的集合概念或集合论宇宙。
笔者曾在《集合论多宇宙观述评》中论证,集合论多宇宙观要么是一种形式主义,要么是与传统柏拉图主义或集合论单一宇宙观相容的[2]。
裘江杰在《集合论多宇宙观与形式主义》中试图把形式主义重新诠释为一种本体论中立的,并且有助于推动数学实践的数学哲学立场[3]。
同时,裘江杰认为集合论多宇宙观可以被纳入这样一种形式主义立场,并且正是在这种形式主义的框架下体现出其对数学实践的正面影响。
由此,进一步佐证了这种本体论中立的形式主义对数学实践是有益的。
在本文中,笔者试图挑战裘江杰的上述观点。
在第一节中,笔者拟论证数学哲学的形式主义是无法真正做到本体论中立的。
在第二节中,笔者将针对性地讨论形式主义就推动数学实践而言的局限性。
在除去结论的最后一节中,笔者将结合一些新结果再次审视围绕集合论多宇宙观的集合论研究与有关数学哲学立场的关系,试图展现集合论多宇宙观独立于形式主义的价值。
一、形式主义不是本体论中立的
在《集合论多宇宙观与形式主义》中,裘江杰承接科里(Haskell Curry)的形式主义立场,认为形式主义应该是本体论中立的,它不在形而上学上做任何假设,并且形式主义并不拘泥于特定的形式化系统。
特别地,他们认为形式主义不应该受到希尔伯特所谓有穷数学的掣肘。
但这种形式主义仍然要求形式系统满足一定的可接受条件,其中包括一致性,却不要求一个一致性证明。
此外,裘江杰和科里都认为关于这些形式系统的“元数学”研究是重要的。
在本节中,笔者首先试图论证任何有意义的形式主义都无法做到真正的本体论中立。
同时,笔者也试图解释,希尔伯特关于形式主义“元数学”必须是有穷数学的限制性立场为何不能任意放宽。
在后人的解释中,一般认为希尔伯特的形式主义不是本体论中立的。
他将数学分割为可靠的有穷数学(finitary mathematics)以及其一致性有待证明的经典数学,后者包括康托尔发明的集合论。
的确可以说,希尔伯特本人关于包括集合论在内的经典数学的本体论问题试图展现一种中立的立场,或者说试图悬置抽象实体或无穷集合是否存在的问题。
同时,希尔伯特捍卫数学工作者在“康托尔的乐园”中自由探索的价值,其手段就是将这部分数学形式化,并在可靠的有穷数学中证明这个形式化了的公理系统是一致的。这就是所谓的希尔伯特纲领(Hilbert’s Program)。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。