注意到上面的证明并没有涉及“measurable基数都是Ramsey基数”(Rowbottom在证明了Theorem 2之后又证明了这个定理)。如果要用模型论方法证明Theorem 2 的话是trivial的:假设κ 是measurable基数和最小的Ramsey,令 j:V → M 的见证 κ 可测的非平凡初等嵌入。类似于Theorem 2,令 fα 见证 α 不是Ramsey,其中 α<κ 。定义 F={fα}α<κ ,那么 V╞ ∀α<κ∃f∈F(Ψ(α,f)) ,其中 Ψ(α,f) 表示“f 见证 α 不是Ramsey”,由初等嵌入性质得 M╞ ∀α<j(κ)∃f∈j(F)(Ψ(α,f)) 。由于 κ<j(κ) ,则在 j(F) 中有函数 g 见证 κ 不是Ramsey,即 M╞ ∀H∈[κ]κ∃n∃s,t∈[H]ⁿ(g(s) ≠ g(t)),又因为 Vᴹκ₊₁=Vκ₊₁ ,所以 V╞ ∀H∈[κ]κ∃n∃s,t∈[H]ⁿ(g(s) ≠ g(t)) ,这与 κ 是Ramsey矛盾,反证定理成立。
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。