如何证明最小的Ramsey基数不是measurable?这个问题最早是由Rowbottom在1965年解决的,有趣的是,尽管Scott在1961年就发现了measurable和j:V → M 的等价性,但Rowbottom给出的是纯组合证明,而非模型论证明。我在看Rowbottom的论文时没有看懂它的证明,但在看Erdos证明“如果 ℵα 不是Jonsson基数,那么 ℵα₊₁ 也不是”的过程中想到了,感觉这两个证明之间存在相同的模式。这就是本文的内容。
以下内容都在ZFC下进行。
我们称基数κ 是Ramsey,当且仅当 ∀f:[κ]<ω → 2 ,存在 f 的齐一集 H∈[κ]κ 。
称κ 是measurable,当且仅当 κ 上存在 κ complete 的non-principle normal ultrafilter。
称κ 是Jonsson,当且仅当 ∀f:[κ]<ω → κ ,都存在 H∈[κ]κ 满足 f[[H]<ω] ⊆ H∧H ≠ κ 。
Theorem 1:假设κ 不是Jonsson,那么 κ⁺ 也不是。
证明:对于任意κ≤α<κ⁺ ,令 fα:[α]<ω → α 见证 α 不是Jonsson,定义 f:[κ⁺]<ω → κ⁺ 满足 f(s)=fα(s – {α}) ,其中 α=max s 。假设存在 H∈[κ⁺]κ⁺ 满足 f[[H]<ω] ⊆ H∧H ≠ κ⁺,那么任选 H 中的 κ 个元素 G={βξ:ξ<κ} ,设
supβξ=β<κ⁺,
ξ<κ
则 f|[β]<ω=fᵦ|[β]<ω;由于 fᵦ 见证 β 不是Jonsson且 G∈[β]κ ,所以 f[[G]<ω]=β ,进而得 f[[H]<ω]=κ⁺ ,因此 f 见证 κ⁺ 不是Jonsson,定理成立。 ⊣
下面我们给出Rowbottom的证明。
Theorem 2:最小的Ramsey基数不是measurable的。
证明:假设κ 是最小的Ramsey,则 α<κ 都不是Ramsey,令 fα:[α]<ω → 2 见证 α 不是Ramsey,按照Theorem 1的方式定义函数 f:[κ]<ω → 2 ,那么存在 H∈[κ]κ 是 f 的齐一集。
如果κ 是measurable,令 U 是 κ 的 κ complete normal ultrafilter,根据normal 的性质可知 κ 的所有无界闭集都属于 U ,因此 H'∈U ,其中 H' 是 H 的全部极限点。定义 H''={β∈H':|β|=β} 和 H'''={γ∈H'':|γ∩H''|=γ} ,由于normal ultrafilter的性质知 H'''∈U 。现在对于任意 γ∈H''' , γ 是基数且 γ 之下有 γ 个 H 中的元素,因此 H∩γ∈[γ]γ 且 fᵧ|[H∩γ]<ω=f|[H∩γ]<ω ;由于 fᵧ 见证 γ 不是Ramsey,因此存在 s,t∈[H∩γ]ⁿ 且 fᵧ(s) ≠ fᵧ(t) ,进而有 f(s∪{γ}) ≠ f(t∪{γ}) ,反证 H 不是 f 的齐一集,矛盾,反证定理成立。 ⊣
数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。