数学联邦政治世界观
超小超大

数学(一) (6-2)

对于任意有穷集合x⊂ω,存在脱殊集合y,使得x⊂y

脱殊集合y的每一ZF可定义的子集合都是有穷的

每一个脱殊集合都是无穷的

每一个脱殊集合都是ZF不可定义的

若x是M中ω的一个无穷子集合,y⊂ω是一个脱殊集合,则有:x∩y仍为无穷集合;x⊄y;ω∸x无穷,可获得y⊄x;x∸y,仍为一无穷集合

若y₁,y₂为两不同脱殊集合,则有:y₁⊄y₂且y₂⊄y₂;y₁∩y₂为无穷集合;y₁∸y₂与y₂∸y₁皆为无穷集合

区间[0,1]的脱殊数是稠密的。

内/外模型

内模型:集合论相容性证明基本法之一。设∑₁,∑₂为集合论语言的两个公式集,M为∑₁中的一个模型,若存在公式A(x),使得N={x|x∈M, A(x)}为∑₂中的模型,则称N为M的内模型。假定∑₁相容且已知∑₁有模型M,若能在∑₁下证明存在M的一个内模型N,使N为∑₂的模型,则证明了∑₂对于∑₁的相容性。

外模型:集合论相容性与独立性证明的主要方法之一。设∑₁,∑₂为集合论语言中的两个公式集,M为∑₁的一个模型,若N⊇M,N≠M,且N为∑₂的模型,则称N为M的一个外模型。

极小模型:若M为ZF系统的一个可传模型,且为ZF系统的所有可传模型的子模型,则称M为ZF系统的极小模型。可构造全域L为ZF系统的极小真类模型。

分化性质

无穷组合论中的刻画基数大小的基本性质,设k、λ都是基数,n是自然数,m是有穷/无穷基数,如果把k的n元子集的集合[k]ⁿ={A⊆k| |A| = n}任意划分为m块,至少有一个基数为λ的子集H⊆k,使得[H]ⁿ中的元素全能落入所划分的同一块中,则说明这些基数之间存在分化性质k→(λ)ⁿ_m。而分化性质则是鸽笼原理的直接推广(鸽笼原理:m个物体放入n个盒子里,在n<m时,必有一个盒子中有两件物品,即m→(2)¹_n)

基数ℵ₀的分划性质为:ℵ₀→(ℵ₀)²₂,而大于等于3的自然数m不具有m→(m)²₂的分划性质;而且大于ℵ₀的基数也不具有这种性质。由2^ℵ₀/(ℵ₁)²₂,可由定义得知当k/(λ)ⁿ_m及k₁ ≤ k时,必有k₁/(λ)ⁿ_m。而ℵ₁≤2^ℵ₀,所以ℵ₁/(ℵ₁)²₂。

而具有k→(k)²₂分划性质的不可数基数被称为弱紧基数,该基数的存在在ZFC系统中无法证明。

利用该性质,我们可以构造出更多的基数,如:

α是正则基数,当且仅当∀β<α[α→(α)¹_β]

k是弱不可达基数,当且仅当k>ω且∀γ<k[k→(k)¹_γ⁺]

k是强不可达基数,当且仅当k>ω且∀γ<k[k→(k)¹_(2^λ)]

k是不可表达基数,当且仅当k>且k→(驻集)²₂

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

胡说西游2 连载中
胡说西游2
小院多芭蕉
云玖的人间之旅并不愉快,时不时要打个妖怪,应付各种妖魔鬼怪和魑魅魍魉,还得防火防盗防小妖精。女妖精要防,男妖精也要防!冷不伶仃就让他们给弄出......
41.6万字12个月前
猫小九和朋友们的搞笑日常 连载中
猫小九和朋友们的搞笑日常
顾泽素
猫小九生活之间的事
1.3万字12个月前
文豪野犬:消失的圣琴(乙女) 连载中
文豪野犬:消失的圣琴(乙女)
相忧
5.6万字12个月前
魔王之恋(DE) 连载中
魔王之恋(DE)
开心_53013309082882668
ED我磕死。
9.3万字12个月前
快穿:反派你好坏! 连载中
快穿:反派你好坏!
软的糖
暂时没有简介ヽ(ฅ≧へ≦)ฅ
0.9万字12个月前
我的后宫战队 连载中
我的后宫战队
精诚不秀
我是一个喜欢二次元的高中生,一次机缘巧合我穿越到了一个叫“幻想世界”的地方,这里居然有和我杂志上一样的二次元人物。于是我与她们相识相交,建立......
6.5万字12个月前