数学联邦政治世界观
超小超大

柯西留数定理 (2-2)

── ∫Γ⁻f(z)dz(Γ:|z|=ρ>r)

2πi

为f(z)在点∞ 的留数,记 Resf(z) 。

z=∞

注意这里的积分路径是负方向也就是顺时针方向。有的读者会疑问为何在无穷远点的留数积分路径为负方向,原因在于负方向的圆周绕着无穷远点则是正向了,因为无穷远点是在圆周之外。下面的定理把无穷远点的留数包含进来了。

定理2:

如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点),设为a1,a2,...,an,∞,则f(z)在各点的留数总和为0。

证明:

以原点为圆心作圆周Γ 使除∞外的奇点都包含于 Γ 内部,则根据留数定理,

∫Γf(z)dz=2πi∑Resf(z),于是

ₖ₌₁ z=αₖ

ₙ 1

∑Resf(z)+── ∫Γf(z)dz=0,即

ₖ₌₁ z=αₖ 2πi

∑Resf(z)+Resf(z)=0

ₖ₌₁ z=αₖ z=∞

某些实定积分的计算用留数定理会简洁很多,这再一次印证了曾有数学家说的一句话:实数之间真理的最短路径经过复数。下面演示某些三角函数类的积分可以用留数定理计算。

例:∫₀²π R(cosθ,sinθ)dθ

令z=eⁱθ,则

z+z⁻¹ z – z⁻¹

cosθ=───,sinθ=───,

2 2i

dz

dθ=──,

iz

θ 从0到 2π 时,z从1正向沿着圆周一圈,于是

∫₀²π R(cosθ,sinθ)dθ=∫|z| → ↓

z+z⁻¹ z – z⁻¹ dz

R(───,───) ──,

2 2i iz

只需要计算圆周内奇点的留数就能求出积分,对于原函数不易求的积分,这样的方法大大降低了积分求解的难度。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

星座女团 连载中
星座女团
LiLi曦曦
0.8万字9个月前
快穿之大佬又疯啦 连载中
快穿之大佬又疯啦
古_098304736
简介正在更新
46.0万字8个月前
安帝丝的皇 连载中
安帝丝的皇
酴幽.
(已签约,转载请注明,拒抄袭)忠犬骑士×沉稳公主“我会为你加冕成王”他们颠沛流离,他们有惊无险最终互相理解,成为相互的救赎
17.3万字8个月前
三生三世凤与卿 连载中
三生三世凤与卿
在下江七
【2022.4.13已签约】【古幻神话系列】凤界真大佬拽女主×妖界真狐狸美男主凤归第一世,我为救你,失己七情六欲,惟愿狐狸安康…第二世,我为......
14.9万字8个月前
龙宫:蓝鲸 连载中
龙宫:蓝鲸
归晚0224
①传说,天竺神女,拥有神眼,还可以看到未来。这双眼被世人窥探许久,由于天界贪婪,掉落人间,出现了一场又一场的,绝世浩劫!有一次又一次的,看清......
9.9万字8个月前
星际女配貌美如花 连载中
星际女配貌美如花
本虫
已签约努力保持日更21世纪的五好美少女,因为评价了一句和她名字一样的女配星际文,魂穿了!!
4.5万字8个月前