数学联邦政治世界观
超小超大

柯西留数定理 (2-2)

── ∫Γ⁻f(z)dz(Γ:|z|=ρ>r)

2πi

为f(z)在点∞ 的留数,记 Resf(z) 。

z=∞

注意这里的积分路径是负方向也就是顺时针方向。有的读者会疑问为何在无穷远点的留数积分路径为负方向,原因在于负方向的圆周绕着无穷远点则是正向了,因为无穷远点是在圆周之外。下面的定理把无穷远点的留数包含进来了。

定理2:

如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点),设为a1,a2,...,an,∞,则f(z)在各点的留数总和为0。

证明:

以原点为圆心作圆周Γ 使除∞外的奇点都包含于 Γ 内部,则根据留数定理,

∫Γf(z)dz=2πi∑Resf(z),于是

ₖ₌₁ z=αₖ

ₙ 1

∑Resf(z)+── ∫Γf(z)dz=0,即

ₖ₌₁ z=αₖ 2πi

∑Resf(z)+Resf(z)=0

ₖ₌₁ z=αₖ z=∞

某些实定积分的计算用留数定理会简洁很多,这再一次印证了曾有数学家说的一句话:实数之间真理的最短路径经过复数。下面演示某些三角函数类的积分可以用留数定理计算。

例:∫₀²π R(cosθ,sinθ)dθ

令z=eⁱθ,则

z+z⁻¹ z – z⁻¹

cosθ=───,sinθ=───,

2 2i

dz

dθ=──,

iz

θ 从0到 2π 时,z从1正向沿着圆周一圈,于是

∫₀²π R(cosθ,sinθ)dθ=∫|z| → ↓

z+z⁻¹ z – z⁻¹ dz

R(───,───) ──,

2 2i iz

只需要计算圆周内奇点的留数就能求出积分,对于原函数不易求的积分,这样的方法大大降低了积分求解的难度。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

快穿之我在游戏里当大佬 连载中
快穿之我在游戏里当大佬
子非珏
南宫陌离和君沐泽从小是青梅竹马穿越到了KW游戏世界里,一路上一起和伙伴们破案打闹,最终得到了真相……(南宫陌离有一个隐藏身份会在后期揭开他字......
0.4万字1年前
喜欢你是我做过最伤心的事 连载中
喜欢你是我做过最伤心的事
玲子心
3.4万字1年前
洛水赋 连载中
洛水赋
银拉baby
江湖总有这么一对佳人,男的把女的宠的跟个孩子一般,女的对男的护的跟自己家崽子一样。
10.1万字1年前
观影体,嘿嘿 连载中
观影体,嘿嘿
喜沁墨琳
作者,你存心找茬是吧!
2.5万字1年前
红晕1 连载中
红晕1
水立方18
吸血鬼和女孩
7.1万字1年前
希腊神话:冰封之雪 连载中
希腊神话:冰封之雪
月狸子
洛佩斯从山的顶峰诞生,于是世上有了冰雪与冬
0.0万字1年前